

Z-Pinch Inertial Fusion Energy

Capsule compression experiments on Z

Z-Pinch Power Plant Chamber

Repetitive Driver LTD Technology

Craig L. Olson Sandia National Laboratories Albuquerque, NM 87185 RCM on "Elements of Power Plant Design for IFE" IAEA headquarters
Vienna, Austria
November 4-7, 2003

Why Z-Pinch IFE?

<u>x-rays:</u> 1.8 MJ of x-rays on Z (demonstrated) available now

low cost: \$30/J for ZR (demonstrated cost)

\$17/J goal for X-1 high yield study (1999)

<u>high efficiency</u>: wall plug to x-rays: ~15% on Z (demonstrated)

can be optimized to: ~25% or more

<u>capsule compression experiments on Z:</u> (demonstrated)

double-pinch hohlraum¹: $Cr \approx 14-20$, symmetry ~3%

dynamic hohlraum²: $\sim 24 \text{ kJ x-rays absorbed}$, $\text{Cr} \approx 10$, DD neutrons

hemisphere compression for fast ignition³: $Cr \approx 2$

(1Cuneo, et al.; 2Bailey, Chandler, Vesey, et al.; 3Slutz, et al.)

repetitive pulsed power:

RHEPP magnetic switching technology:

2.5 kJ @ 120 Hz (300 kW ave. pwr. demonstrated)

LTD (linear transformer driver) technology:

being developed (compact, direct, simple)

The long-range goal of Z-Pinch IFE is to produce an economically-attractive power plant using high-yield z-pinch-driven targets (~3 GJ) at low rep-rate (~0.1 Hz)

Z-Pinch IFE DEMO (ZP-3, the first study) used 12 chambers, each with 3 GJ at 0.1 Hz, to produce 1000 MWe

Z-Pinch IFE Matrix of Possibilities

(choose one from each category)

Z-Pinch Driver:

Marx generator/ water line technology magnetic switching

(RHEPP technology)

linear transformer driver

(LTD technology)

RTL (Recyclable Transmission Line):

Flibe/electrical coating

immiscible material

(e. g., low activation ferritic steel)

Target:

double-pinch

dynamic hohlraum

fast ignition

Chamber:

dry-wall

wetted-wall

thick-liquid wall

solid/voids

(e.g., Flibe foam)

Z-Pinch Driver

Pulsed-power provides compact, efficient time compression and power amplification

Z-pinches offer the promise of a cost-effective energy-rich source of x-rays for IFE

ZR will be within a factor of 2-3 in current (4-9 in energy) of a High Yield driver.

Z-Pinch IFE Development Path Facilities

RTL

(Recyclable Transmission Line)

Z-pinch power plant chamber uses an RTL (Recyclable Transmission Line) to provide the standoff between the driver and the target

Yield and Rep-Rate: few GJ every 3-10 seconds per chamber (0.1 Hz - 0.3 Hz)

Thick liquid wall chamber: only one opening (at top) for driver; nominal pressure (10-20 Torr)

Flibe absorbs neutron energy, breeds tritium, shields structural wall from neutrons

Eliminates problems of final optic, pointing and tracking N beams, high speed target injection Requires development of RTL

RTL replacement requires only modest acceleration for IFE

 $L = 0.5 \text{ a } t^2, \text{ or } a \sim 1/t^2$

Acceleration is 10⁴ less than for IFE target injection for ions or lasers

RTL Research in last 3 years

RTL electrical turn-on <u>Saturn experiments</u> (2000)

tin, Al, stainless-steel all show negligible losses

RTL low-mass and <u>Saturn experiments</u> (2001)

electrical conductivity 20μ mylar; 50μ, 100μ, 250μ steel

RTL mass could be as low as 2 kg

RTL mass ~ 50 kg has low resistive losses

RTL structural Calculations (U. Wisconsin) (2002)

full-scale RTL (~50 kg) of 25 mill steel ok for

background pressure ~ 10-20 Torr

RTL manufacturing (allowed RTL budget is a few \$ for 3 GJ)

Flibe casting (~\$0.70/RTL)

ferritic steel stamping (~ \$1.20-3.95/RTL)

Targets

Z-pinch-driven-hohlraums have similar topology to laser-driven-hohlraums, but larger scale-size

The baseline DEH capsule yields 380 MJ with an ignition margin similar to a NIF capsule

Capsule Performance Parameters

223 eV
37
$2.9 \times 10^7 \text{ cm/s}$
36
420
750 g/cm ³
3.15 g/cm ²
16 MJ
1.12 MJ
380 MJ
31%

J.H. Hammer, et al., Phys Plasmas 6, 2129

Summary – Double-ended hohlraum ICF status

- Simulation codes and analytic modeling have been validated by measurements of time-dependent z-pinch x-ray production, z-pinch hohlraum temperatures, and capsule hohlraum temperatures
- A reproducible, single power feed, double z-pinch radiation source with excellent power balance has been developed for ICF capsule implosion studies
- The Z-Beamlet Laser (ZBL) is routinely used as an x-ray backlighter at x-ray energies up to 6.75 keV
- Capsule symmetry (P2 and P4) in double-pinch hohlraums on Z can be systematically controlled with demonstrated time-integrated symmetry of ≤ 3%
- Optimum hohlraums on Z should produce time-integrated radiation symmetry of ≤ 1% for 5 mm diameter capsules and absorbed energies of 25 kJ
- P4 shimming shots are scheduled in collaboration with LLNL and LBL HIF program

Double-Ended Hohlraum Concept Publications

Concept

Hammer, Tabak, Wilks, et. al., Phys. Plasmas, <u>6</u>, 2129(1999)

Hohlraum energetics

Cuneo, Vesey, Porter et al., Phys. Plas. <u>8</u>, 2257 (2001)

Cuneo, Vesey, Hammer et al., Laser Particle Beams, <u>19</u>, 481 (2001)

Hanson, Vesey, Cuneo et al., Phys. Plas. <u>9</u>, 2173 (2002)

Double pinch performance

Cuneo, Vesey, Porter et al., Phys. Rev. Lett. <u>88</u>, 215004 (2002)

Symmetric capsule implosions

Bennett, Cuneo, Vesey et al., Phys. Rev. Lett. <u>89</u>, 245002 (2002) Bennett, Vesey, Cuneo et al., Phys. Plasmas (in press)

Symmetry control

Vesey, Cuneo, Bennett et al., Phys. Rev. Lett. <u>90</u>, 035005 (2003) Vesey, Bennett, Cuneo et al., Phys. Plasmas 10, 1854 (2003)

Sinars, Cuneo, Bennett et al., Rev. Sci. Instrum., <u>74</u>, 2202 (2003) Stygar, Ives, Fehl, Cuneo et al., submitted to Phys. Rev. E Cuneo, Chandler, Lebedev et al., submitted to Phys. Rev. Lett. Waisman, Cuneo, Stygar et al., in preparation for Phys. Plasmas

The initial dynamic hohlraum high yield integrated target design produces a 527 MJ yield at 54 MA

Capsule Performance Parameters

Peak drive temperature 350 eV In-flight aspect ratio 48 Implosion velocity $3.3 \times 10^7 \text{ cm/s}$ Convergence ratio 27 DT KE @ ignition 50% Peak density 444 g/cm³ Total or 2.14 g/cm² **Driver energy** 12 MJ Absorbed energy 2.3 MJ Yield 527 MJ **Burnup fraction** 34%

Summary – Dynamic Hohlraum ICF status

- The primary radiation source is a thin radiating shock in the foam converter
- Demonstrated >200 eV x-ray drive temperatures in dynamic hohlraums on Z
- Measured T_e~1 keV, n_e~1x10²³ from Ar K-shell spectra from imploded capsules
- Measured 2.6±1.3x10¹⁰ thermonuclear D-D neutrons from ICF capsules absorbing >20 kJ

Dynamic Hohlraum Concept Publications

- Concept
 - Lash IFSA publication
- Energetics
 - publication on shock and temperature
- Temperature of imploded capsule core
 - publication on Ar spectra and temperature
- Neutron production
 - publication on neutron yield

Code calculations and analytic scaling predict z-pinch driver requirements for IFE DEMO

Double-Pinch Hohlraum

current /x-rays E_{abs} / yield

2 x 62-68 MA 2 x (16-19) MJ 1.3 - 2.6 MJ

400 - 4000 MJ

Dynamic Hohlraum

current /x-rays E_{abs} / yield

54 - 95 MA

12-37 MJ

2.4 - 7.2 MJ

530 - 4400 MJ

Based on these results, an IFE target for DEMO will require: double-pinch hohlraum dynamic hohlraum

36 MJ of x-rays (2x66MA) 3000 MJ yield

$$(G = 83)$$

30 MJ of x-rays (86 MA) 3000 MJ yield

$$(G = 100)$$

Chambers/Power Plant

Z-Pinch IFE and Heavy Ion IFE use thick liquid walls

Z-Pinches use simple waterfalls with a pressure requirement of 10-20 Torr

Thick liquid walls essentially alleviate the "first wall" problem, and can lead to a faster development path

Z-IFE DEMO produces 1000 MWe

DEMO parameters:

yield/pulse:	3 GJ
driver x-rays/pulse (86 MA)	30 MJ
energy recovery factor:	80%
thermal recovery/pulse:	2.4 GJ
time between pulses/chamber:	3 seconds
thermal power/unit	0.8 GWt
thermal conversion efficiency	45 %
electrical output/unit	0.36 GWe
number of units	3
total plant power output	1.0 GWe

Major cost elements:

LTD z-pinch drivers (3)	\$900 M
RTL factory	\$500 M
Target factory	\$350 M
Balance of Plant	\$900 M
Total Cost	\$2.65 G

ZP-3 (the first study) used 12 chambers, each with 3 GJ at 0.1 Hz

Z-Pinch power plant studies: G. Rochau, et al.: ZP-3

J. De Groot, et al.: Z-Pinch Fast Ignition Power Plant

Z-Pinch IFE near-term plans

Z-IFE PoP is a set of four experiments (shown here) plus IFE target studies plus IFE Power Plant studies

RTL experiments

issues: shape, inductance, mass, electrical/structural, manufacture, cost power flow: limits, optimal configuration, convolute location chamber/interface issues: vacuum/electrical, debris removal, shielding RTL experiment test on Z

Repetitive driver- LTD (Linear Transformer Driver) experiment

1 MA, 1 MV, 100 ns, 0.1 Hz driver design/construction/testing LTD is very compact (pioneered in Tomsk, Russia) no oil, no water LTD technology is modular, scalable, easily rep-ratable 1 MA, 100 kV cell is being developed this year (SNL/Tomsk)

Shock mitigation scaled experiments

3 GJ yield is larger than conventional IFE yields of 0.4-0.7 GJ coolant streams, or solids/voids, may be placed as close to target as desired shock experiments with explosives and water hydraulic flows validate code capabilities for modeling full driver scale yields

Full RTL cycle @ 0.1 Hz experiment

integrated experiment (LTD, RTLs, z-pinch loads, 0.1 Hz) demonstrate RTL/z-pinch insertion, vacuum/electrical connections, firing of z-pinch, removal of remnant, repeat of cycle z-pinches have 5 kJ x-ray output per shot

Cost: \$14M/year for 3-5 years, \$5M for FY04 to start

