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The FY-2001 goals are to build and characterize
Mercury laser system with one amplifier and two
pump modules C

This will be accomplished through 6 objectives:

« Build two pump delivery systems

« Fabricate Yb:S-FAP crystals

« Design and build wedged amplifier head
 Build injection and reverser hardware
 Integrated tests and code benchmarking
« Advanced Yb:S-FAP growth

The budget allocation for these tasks is $8250k

The short term goal is to develop a 100 J/1.05um/10 Hz/10% laser capable
of generating 2-10 ns pulses for IFE-related experiments for example:
X-ray generation, rep-rate targets, beam-smoothing, optical damage, etc.




Gas-cooled

amplifier heads
* He gas flow at 0.1 Mach

Front-end
« 300 mJ, M2=1.8

Crystals
* 7 Yb3*:Sr,(PO,),F slabs
in each amplifier head

Diode arrays
* 6400 diodes total (900 nm)
* 640 kW peak power




The 5 Year Plan for Mercury Laser Development

Iw Mercury Laser (100J, 10Hz, 10% n, 1/10 scale, 2-10ns)

Half-Mercury (10-20J, 1 amplifier, 1-7 crystals, 2 pump arrays)

Full 100 Mercury | (100J, 2 amplifiers, 14 crystals, 4 pump arrays)

1w Activation (Beam line characterization)

Mercury and IRE Components

Average Power Pockels cell

S cm S-FAP Crystals

15 cm S-FAP Crystals and Edge Cladding

100 W Diode bars » > 200 W IFE Diode bars

3w Mercury Laser with Beam Smoothing

Deformable Mirror

Spectral Sculpting

Average Power 3w Generation

Beam-Smoothing

IRE Architecture

Code Development and Modeling of System » Design

Short-Pulses
FY 2001 I FY 2002 [ FY 2003 [ FY 2004 | FY 2005 |




IRE laser is envisioned as a 4 x 1 beam bundle
which is split after frequency conversion to a4 x 4

beam array (~4 kJ) C
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Objective 1: Build two pump delivery systems C

Goal

pump duct and
homogenizer

diode package
on split backplanes
vacuum
enclosure

gas-cooled
amplifier head

Status

80 V-BASIS 23-bar 900 nm tiles fabricated
Two backplanes fabricated
Remaining power supplies/pulsers purchased

Pump delivery hardware being assembled
- lens duct

- homogenizer

- telescope

- vacuum enclosure



Reflectivity measurements of the silver-coated
hollow lens duct show a >98% loss per bounce C
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V-BASIS package components
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The V-BASIS packaged diode bars meet the optical
specifications of the Mercury Laser System

S

Requirement Status
115 Wpeak/ lcmbar
100 Wpeakll cm bar demonstrated with good
lifetime
Fabrication of 80 tiles Completed
45%electrical to 44%demonstrated almost

optical efficiency

Reliability of
>2x108shots

Testing is ongoing, but

currentlydemonstrated

1.4x10 8 shots without
problems

Power droop during
pulse < 15%

5%droop demonstrated

Assemble tiles on
split backplane

Work isongoing to finish 1
full backplane array (72
mounted tiles)

Pulse -integrated
linewidth <85 nm FWHM

Demonstrated 4.7 nm FWHM
on tiles for one split
backplane
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Objective 2: Fabricate S-FAP crystals C

Litton boule (4x6 cm slab):
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Status

* 3 boules are being cut and polished
in preparation for diffusion bonding and
slab fabrication

* OneLLNL furnace converted to Litton design
- improve control of:
atmospheric growth conditions
thermal gradients
- anticipated first growth 2/11

* Alternative bonding methods being explored:
- Stanford
- LETI and Crystal Laser, France




The emission cross section and doping have been
measured for the LLNL and Litton crystals
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A pathway for producing 3.2 cm diameter crystals has been

defined ©
. Roles
Issue Fundamental Cause Resolution :
LLNL | Airtron
excess SrF, in melt Under Under
i Precipitation on line defects i
Cloudiness p annealing over melt control control
c-axis along growth
Anomalous absorption Yb* in a different site direction Under Nearly
P thermal gradients of control | resolved
<70C/cm
seed extensions to Under Under
i i Dislocations from the seed row out boundaries
Grain boundaries J control | control
growth stability
Bubble Core Constitutional supercooling maximize thermal Under Under
gradients control control
cool crystals attached
Cracking Internal stresses to melt Under Nearly
control | resolved
diffusion bond half-size
Size Control of defects slabs Under Under
control control
Yb-doping of <0.75 At%
Sparkle inclusions | Limited Yb solubility in melt in melt Nearly | Under
resolved | control
R&D Lead Backup
Production Backup Lead




Objective 3: Design and build wedged amplifier head C

Goal
Status
Back O sy O e = —
reflections =T
Wedging elements of amplifier head vertically
distributes reflections away from the extraction beam
Backward and forward . : L
reflections from slabs, . o )
windows, lenses,... . . X
® ‘ 2 [ ] &
0.7, 1.05, 1.4 and 1.75 mm . .
diameter pinholes — ———» W5 * - &
N « Ray trace code written in OPTICAD
1.75 cm (10 mrad) dia. circle 3 .
! « 0.5degree slab wedge amplifier
i ¢ design in progress



Pressure and gas flow contributes 1/16 wave to
wavefront distortion
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Objective 4. Build reverser and injection hardware C

Goal

Status

* Injection hardware fabricated

» Half aperture Pockels cell being tested
- 1.5x 2.5cm?
- Full aperture parts on order
- 100 W goal (10J, 10Hz, <1J/cm?)

* Front end assembled
- YLF oscillator and two amplifiers installed

* Vacuum transport telescopes assembled



A half aperture (1.5 x 2.5cm?) average power

Pockels cell is being assembled and tested
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allows compensation for
thermally-induced birefrigence

¥ Operating fluence of 0.5 J/cm?is below
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Pencil beams are generated at every lens
and will require isolation to control their growth |
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The Mercury laser system minimizes damaging
fluences by maximizing the number of amplifiers

and optics near the relay plane ©
Pockel s
Cill
/ Injection
Reverser
e Amplifier 1
< ﬂ N A (
1.5 x output
telescope lens = —
Relay plane

4

Deformable Mirror Amplifier 2
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The front end currently produces 300 mJ

with a beam quality of M?2< 2
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Objective 5: Integrated tests

and benchmarking C

Goal

MIRO propagation code

¥ 96 % light in 5x diffraction limited beam
¥ 37% light in a 1x diffraction limited beam

Temporal Energy Far Schlieren Wavefront Near
Field Field

Status

Backplane and pump delivery tests: 4/1
- Power, droop, chirp, polarization
- efficiency, far/near field, uniformity

One of two diagnostics packages built

Miro prop. code written to model half Mercury
- measured wavefront files

- gain files from ray trace code

- angular multiplexing

- 4 unequally sized pinholes



Objective 6: Advanced S-FAP growth |

Goal

- 10 cm —

15 cm

? A axis

C axis

Czochralski: LLNL/Litton Airtron

Pull rate
=0.5 mmdhr
Rotation rate T SrHPO,
~20 rpm SrCO;,
o EFF?

¥b, 04

Yh:S-FAP melt

HEM: Crystal Systems

Status

» Contract written and to be awarded to
Crystal Systems to demonstrate feasibility of
growing large diameter Yb:S-FAP crystals
by heat exchanger method (HEM)

* LLNL/Litton will investigate feasibility of
flat interface growth



Objective 6: Advanced S-FAP growth cont. C

.at Exchanger Meth. -e Diameter, Flat-Interface Me-

Convex Interface T, Frat InterfaceT 1
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Dead Zone Minimal Dead Zone
Core Generation No Core Generation

Growth is controlled by cooling the seed
and slowly lowering the furnace
temperature to maintain a stable interface

5 inch diameter Nd:GGG crystal grown
13 inch diameter Sapphire crystal by the flat interface method.




LLE: Spectral Sculpting progress uR

LLE

N
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By sculpting the input spectrum, Yb:S-FAP can generate 1 THz UV bandwidth without AM




A compact spectral sculptor using aliquid-crystal
modulator light valve has been demonstrated Ve

* Gratings: 1740 grooves/mm
— * Telephoto imaging system

. EFL ~ 800 mm

'* Original FM

Sculp ted

Intensity
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Frequency (GHz)



A compact spectral sculptor using aliquid-crystal
modulator light valve has been demonstrated Ve

N

Grating

* Gratings: 1740 grooves/mm
* Telephoto imaging system
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The spectral sculptor uses a liquid-crystal
modulator light valve wat o

LLE
N
Top
¢ View

< 128 elements >

Glass
Liquid Crystal (@)

Glass

2 mm

Glass

Liquid Crystal (I)

Glass

100 pm T4'26 mm

* Commercially available unit uses two 128 pixel liquid-crystal modulators.

* Each pixel serves as a computer controllable amplitude and phase
mask for a single FM sideband.



Summary

Milestone budget breakout:

«  $3030k
o  $1800k
o  $825k
« $1025k
o $1270k
e  $300Kk
¢  $350k

Build two pump delivery systems

Fabricate Yb:S-FAP crystals

Design and build wedged amplifier head

Build injection and reverser hardware

Integrated tests and code benchmarking

Advanced Yb:S-FAP growth

(LLE) Spectral sculpting experiments and evaluation of
average-power frequency conversion design

We are on schedule to build half Mercury in FYO1




