Mercury Laser

Camille Bibeau Project Leader Laser Science and Technology

Laser IFE Workshop NRL, Washington DC February 6-7, 2001

C:\Mercury\Powerpoint\CANRL.ppt

The FY-2001 goals are to build and characterize Mercury laser system with one amplifier and two pump modules

This will be accomplished through 6 objectives:

- Build two pump delivery systems
- Fabricate Yb:S-FAP crystals
- Design and build wedged amplifier head
- Build injection and reverser hardware
- Integrated tests and code benchmarking
- Advanced Yb:S-FAP growth

The budget allocation for these tasks is \$8250k

The short term goal is to develop a 100 J/1.05μm/10 Hz/10% laser capable of generating 2-10 ns pulses for IFE-related experiments for example: x-ray generation, rep-rate targets, beam-smoothing, optical damage, etc.

The 5 Year Plan for Mercury Laser Development

Spectral Sculpting

Average Power 3ω Generation

Beam-Smoothing

IRE laser is envisioned as a 4 x 1 beam bundle which is split after frequency conversion to a 4 x 4 beam array (~4 kJ)

Objective 1: Build two pump delivery systems

- 80 V-BASIS 23-bar 900 nm tiles fabricated
- Two backplanes fabricated
- Remaining power supplies/pulsers purchased
- Pump delivery hardware being assembled
 - lens duct
 - homogenizer
 - telescope
 - vacuum enclosure

Reflectivity measurements of the silver-coated hollow lens duct show a >98% loss per bounce

V-BASIS package components

The V-BASIS packaged diode bars meet the optical specifications of the Mercury Laser System

(W)

Requirement	Status	Status	
100 W _{peak} /1 cm bar	115 W _{peak} /1 cm bar de monstrated with good lifetime		
Fabrication of 80 tiles	Completed		
45% electrical to optical efficiency	44% demonstrated	almost	
Reliability of > 2x10 ⁸ shots	Testing is ongoing, but currently demonstrated 1.4x10 ⁸ shots without problems		
Power droop during pulse < 15%	5% droop demonstrated		
Assemble tiles on split backplane	Work is ongoing to finish 1 full backplane array (72 mounted tiles)		
Pulse-integrated linewidth < 8.5 nm FWHM	Demonstrated 4.7 nm FWHM on tiles for one split backplane		

Wavelength Distribution of 80 V-BASIS Packages Number of V-BASIS Packages 897 898 899 900 901 902 nm 3000 2500 2.75 kW Mercury require 2000 (23 bars) Power 1500 1000 500 0 60 80 100 120 140 20 40 0

Current(A)

Objective 2: Fabricate S-FAP crystals

LLNL boules (3x5 cm slab):

Litton boule (4x6 cm slab):

- 3 boules are being cut and polished in preparation for diffusion bonding and slab fabrication
- One LLNL furnace converted to Litton design
 - improve control of: atmospheric growth conditions thermal gradients
 - anticipated first growth 2/11
- Alternative bonding methods being explored:
 - Stanford
 - LETI and Crystal Laser, France

The emission cross section and doping have been measured for the LLNL and Litton crystals

A pathway for producing 3.2 cm diameter crystals has been defined

Issue	Fundamental Cause	Resolution	Roles	
Issue	Fundamental Cause	Resolution	LLNL	Airtron
Cloudiness	Precipitation on line defects	 excess SrF₂ in melt annealing over melt 	Under control	Under control
Anomalous absorption	Yb ³⁺ in a different site	 c-axis along growth direction thermal gradients of <70^YC/cm 	Under control	Nearly resolved
Grain boundaries	Dislocations from the seed	seed extensions to grow out boundaries	Under control	Under control
Bubble Core	Constitutional supercooling	 drowth stability maximize thermal gradients 	Under control	Under control
Cracking	Internal stresses	 cool crystals attached to melt 	Under control	Nearly resolved
Size	Control of defects	<pre> diffusion bond half-size slabs</pre>	Under control	Under control
Sparkle inclusions	Limited Yb solubility in melt	Yb-doping of <0.75 At% in melt	Nearly resolved	Under control
R&D			Lead	Backup
Production			Backup	Lead

Objective 3: Design and build wedged amplifier head

Wedging elements of amplifier head vertically distributes reflections away from the extraction beam

- Ray trace code written in OPTICAD
- 0.5 degree slab wedge amplifier design in progress

Pressure and gas flow contributes 1/16 wave to wavefront distortion

Gas cooled head and vanes

Objective 4: Build reverser and injection hardware

Goal

- Injection hardware fabricated
- Half aperture Pockels cell being tested
 - 1.5 x 2.5cm²
 - Full aperture parts on order
 - 100 W goal (10J, 10Hz, <1J/cm²)
- Front end assembled
 - YLF oscillator and two amplifiers installed
- Vacuum transport telescopes assembled

A half aperture (1.5 x 2.5cm²) average power Pockels cell is being assembled and tested

- ¥ Dual crystal configuration allows compensation for thermally-induced birefrigence
- ¥ Operating fluence of 0.5 J/cm² is below damage limit

¥ Water coded housing will be employed

Pencil beams are generated at every lens and will require isolation to control their growth

The Mercury laser system minimizes damaging fluences by maximizing the number of amplifiers and optics near the relay plane

The front end currently produces 300 mJ with a beam quality of $M^2 < 2$

Gain measurements

Beam Quality $M^2 = 1.8$

Objective 5: Integrated tests and benchmarking

Goal

Diagnostics

Temporal Energy Far Schlieren Wavefront Near Field Field

MIRO propagation code

¥ 96 % light in 5x diffraction limited beam¥ 37% light in a 1x diffraction limited beam

- Backplane and pump delivery tests: 4/1
 - Power, droop, chirp, polarization
 - efficiency, far/near field, uniformity
- One of two diagnostics packages built
- Miro prop. code written to model half Mercury
 - measured wavefront files
 - gain files from ray trace code
 - angular multiplexing
 - 4 unequally sized pinholes

Objective 6: Advanced S-FAP growth

HEM: Crystal Systems

Goal

Czochralski: LLNL/Litton Airtron

- Contract written and to be awarded to Crystal Systems to demonstrate feasibility of growing large diameter Yb:S-FAP crystals by heat exchanger method (HEM)
- LLNL/Litton will investigate feasibility of flat interface growth

Objective 6: Advanced S-FAP growth cont.

<image>

Growth is controlled by cooling the seed and slowly lowering the furnace temperature to maintain a stable interface

13 inch diameter Sapphire crystal

Large Diameter, Flat-Interface Method

Dead Zone Core Generation

Minimal Dead Zone No Core Generation

5 inch diameter Nd:GGG crystal grown by the flat interface method.

By sculpting the input spectrum, Yb:S-FAP can generate 1 THz UV bandwidth without AM

A compact spectral sculptor using a liquid-crystal modulator light valve has been demonstrated

A compact spectral sculptor using a liquid-crystal modulator light valve has been demonstrated

LE

- Commercially available unit uses two 128 pixel liquid-crystal modulators.
- Each pixel serves as a computer controllable amplitude and phase mask for a single FM sideband.

Milestone budget breakout:

- \$3030k Build two pump delivery systems
- \$1800k Fabricate Yb:S-FAP crystals
- \$825k Design and build wedged amplifier head
- \$1025k Build injection and reverser hardware
- \$1270k Integrated tests and code benchmarking
- \$300k Advanced Yb:S-FAP growth
- \$350k (LLE) Spectral sculpting experiments and evaluation of average-power frequency conversion design

We are on schedule to build half Mercury in FY01