Magnetic Intervention Dump Concepts

A. René Raffray UCSD

With contributions from: A. E. Robson, D. Rose and J. Sethian

HAPL Meeting Santa Fe, NM April 8-9, 2008

1

Recap on Magnetic Intervention from Last Couple of Meetings

- Magnetic intervention to steer ions away from the chamber to reduce threat (ion implantation + energy deposition) on chamber first wall and provide for longer dry wall chamber armor lifetime
- Ions guided to separate ion dumps away from chamber
- Intriguing possibility of even using liquid walls provided geometry allows for it without unacceptable contamination of main chamber
- Two arrangements recently considered:
 - Conventional symmetric cusp arrangement with poles and an equatorial ring
 - Octagonal arrangement (octacusp)

2 Magnetic Intervention Concepts Considered Recently

- Conventional symmetric cusp arrangement with poles and an equatorial ring, and a duck bill ion dump configuration
 - Extremely challenging (if at all feasible) to accommodate huge ion energy fluxes at poles
 - Also very difficult to accommodate footprint and peaking factor of ion fluxes at equatorial ring with dryarmored duck bill ion dumps
- Octagonal arrangement (octacusp)
 - Ion fluxes require fluid protection in dump region (e.g. Pb mist)
 - Gravity works against an upper SI liquid wall dump concept w
 - Challenging to design liquid wall dump region to accommodate ion fluxes without contaminating main chamber

ARR/April 8, 2008

New Inverted Martini Glass Cusp Concept (From B. Robson)

- 97% of ion energy though annular dump port
- Gravity works for us in designing a liquid Pb dump at bottom

Better to Use Inverted Burgundy Glass Concept (if possible) to Prevent Direct Line-of-Sight Contamination of Main Chamber

Possibility of Using a Liquid Dump Concept without Contaminating main Chamber

- Initial liquid dump concept based on separation of function
 - Recycled liquid Pb to accommodate ion energy and particle deposition, including diverted "bleeding" flow for clean-up
 - Separate coolant for power removal (e.g. Pb-17Li)
- Different liquid Pb configurations considered
 - All assume Pb pool at bottom and low-temperature condensation trap (< main chamber wall temperature)
 - "Waterfall" concept
 - Mist concept
 - Liquid film concept (presented here as example)
- Analysis in very early stage
 - Need to analyze all concepts to get a better understanding and to help in deciding direction of effort
 - Need also right analysis tools

Assumptions for Calculating Temporal and Spatial Power Deposition in Liquid Pb Pool

- Chamber diameter, D = 10 m
- Annular Pb ion dump pool, 4 m wide and 10 m in average radius from center line
 - Pb dump pool area = 250 m^2
- Time of flight of ions based on:
 - Number of transits, n_{trans} = 6
 - Opening for annular cusp port as a fraction of chamber wall area = 0.0975
 - 0.0975 of ion energy based on direct flight to liquid Pb dump pool
 - 0.9025/6 assumed lost after each of the 6 assumed transits with time of flight based on $(i_{trans} \times D + L_{port})$
 - To be verified by more detailed calculations (D. Rose)

Ion Spectra from 367 MJ Target

ARR/April 8, 2008

9 UC SanDiego

Attenuation of Ion Spectra By Pb

• 350 MJ target (total ion energy = 87.8 MJ)

Energy of Ions as a Function of Penetration Depth

11

Spatial Ion Energy Deposition in Liquid Pb Ion Dump

Temporal and Spatial Power Deposition in Liquid Pb Pool

- R = 5 m; no chamber gas; 367 MJ target
- Annular cusp ports, with opening at chamber wall
 1.5 m in width and 3.25 m from centerline, and a port length of 10.5 m
- 97% of ion energy through annular port
- Pb liquid density = 11300 kg/m³

Temperature and Evaporation History for Liquid Pb Pool without Vapor Shielding

- Avg Pb-17Li coolant T at back of Pb pool ~ 625 °C
- Pb pool surface T at beginning of cycle = 690 °C
- Total ion energy in annular dump = 85.2 MJ
- From analysis:

 Total evaporation energy = 55.2 MJ
 Energy to liquid Pb pool ~ 30 MJ
- Large amount of evaporated Pb (~23 μm) would provide vapor shielding (see next slide)

ARR/April 8, 2008

Temperature and Evaporation History for Liquid Pb Pool WITH Vapor Shielding

- Avg Pb-17Li coolant T at back of Pb pool ~ 625 °C
- Total ion energy in annular dump = 85.2 MJ
- From analysis: -Total evaporation energy = 14.5 MJ
 - -Assume energy to liquid Pb pool still
 - $\sim 30~MJ$ (probably much lower)
 - -Then vapor shield energy > $\sim 41 \text{ MJ}$
- Smaller amount of evaporated Pb (~6 μm) with vapor shielding
- Pb temperature below surface (~12 microns) > surface temp. and > BP (1749°C at SP) indicating possibility of much higher mass loss and vapor shielding and lower energy deposition in Pb dump (need correct analysis tool)

15

UC SanDiego

Quasi Steady-State Temperature of Pb in Bottom Pool and in Thin Layer Along Port Walls

PORT REGION WITH Pb FILM

• Rep rate = 5

- Energy flux on condensing surface in port = 70 MJ
- Condensing surface area = 1319 m²
- Avg. eff. q'' = 0.21 MW/m²
- ΔT through 2 mm Pb (k = 15 W/m-K) = 35°C
- ΔT through 5 mm SiC/SiC structure + 2 mm mesh (k = 15 W/m-K) = 124°C
- Inlet Pb-17Li temperature ~ 550°C
- Pb-17Li temperature at exit of Pb film ~ 619°C
- Max/Avg/Min Pb surface temperature in port = 812/777/743°C

BOTTOM REGION WITH Pb POOL

- Rep rate = 5
- Energy flux to Pb in bottom pool = 15 MJ (<30 MJ, rough estimate here)

16

UC SanDiego

- Pb pool surface area = 250 m^2
- Avg. eff. q'' = 0.6 MW/m²
- ΔT through 1 cm Pb (k = 15 W/m-K) = 199°C
- ΔT through 5 mm SiC_f/SiC structure (k = 15 W/m-K) =100°C
- Pb-17Li temperature at entry to Pb pool ~ 619°C
- Exit Pb-17Li temperature ~ 634°C
- Max/Avg/Min Pb surface temperature in pool = 969/962/954°C

Pb Vapor Pressure as a Function of Temperature

• Liquid Pb density = $11,300 \text{ kg/m}^3$

Film Condensation in Ion Dump Port

$$j_{net} = \left(\frac{M}{R2\pi}\right)^{0.5} \left[\Gamma\sigma_c \frac{P_g}{T_g^{0.5}} - \sigma_e \frac{P_f}{T_f^{0.5}}\right]$$

 j_{net} = net condensation flux (kg/m²-s) M = molecular weight (kg/kmol) R = Universal gas constant (J/kml-K) Γ = correction factor for vapor velocity towards film σ_c , σ_e = condensation and evaporation coefficients P_g, T_g = vapor pressure (Pa) and temperature (K) P_f, T_f = saturation pressure (Pa) and temperature (K) of film

Example Scoping Calculations for Annular Dump Port

- Liquid Pb as film material
- Surface Condensation Area = 1319 m²
- **Port Volume = 2639 m³**
 - $\sigma_{\rm c}, \sigma_{\rm e} = 0.5$
- **Γ** = 1
- Pb evaporated thickness (~10 microns) and vapor temperature (~2500°C) estimated from RACLETTE results
- Characteristic condensation time estimated based on vapor mass in chamber and condensation rate corresponding to assumed conditions

Scoping Analysis of Pb Condensation in Example Annular Port Dump Region

 Characteristic condensation time fast, ~0.03 s, over a large range of condensation surface temperature (time to condense all Pb vapor at given conditions)

Characteristic Annular Cusp Port Condensation Time as a Function of Surface Condensation Temperature 1.3E-01 **Chracteristic Condensation** 1.1E-01 9.0E-02 Time (s) 7.0E-02 5.0E-02 3.0E-02 1.0E-02 500 600 700 800 900 1000 1100 1200 Condensation Surface Temperature (°C)

Rough Estimate of Integrated Condensation Assuming Linear Decrease in Vapor Temperature

- Simple integration of condensation rate as a function of changing conditions assuming linear decrease in vapor temperature (from a maximum temp. of 2500°C to the condensation surface temperature)
 - Faster return to vapor pressure for higher higher condensation surface temperature and for longer time between shots (lower rep rate)
 - For a rep rate of 5, results indicates return to vapor pressure for a surface temperature of ~720°C (0.96 Pa)

Proposed Inverted Burgundy Glass Concept Encouraging but More Analysis Needed to Determine Feasibility and Attractiveness

Questions needed to be addressed include:

- Better characterization of behavior of Pb pool under ion energy deposition
- Ion energy attenuation in Pb vapor and radiation analysis needed to characterize energy deposition on port walls and whether a protective film is needed
- Can the port geometry and coolant hardware be placed so as not to interfere with the laser beams?
- Does the configuration provide enough geometry restriction and condensation trapping to prevent unacceptable main chamber Pb contamination?
- Would a thick liquid wall or a mist configuration provide better protection against contamination of main chamber?
- How to design the dumps to accommodate the polar ion fluxes ($\sim 3\%$)?

MORE WORK NEEDED AND COMMENTS ARE MOST WELCOME

