Electra KrF Laser Development

18th HAPL Meeting Santa Fe, NM April 8, 2008

Naval Research Laboratory Plasma Physics Division Washington, DC

Presented by Frank Hegeler

Work supported by *DOE/NNSA/DP*

NRL J. Sethian S. Obenschain M. Myers

M. Wolford J. Giuliani J. Dubinger

Commonwealth Tech F. Hegeler M. T. Albert J. R. Jones P.

M. Friedman J. Parish P. Howard

RSI P. Burns S. Searles

R. Lehmberg W. Webster

SAIC R. Jaynes A. Mangassarian

Applied Pulsed Power S. Glidden H. Sanders

PLEX LLC M. McGeoch

Georgia Tech S. Abdel-Khalik K. Schoonover

D. Sadowski

The Electra KrF Laser System

Strip Cathode on Pre-Amplifier Increases Pump Efficiency to Achieve 30 J Laser Yield

Gas Composition	Pressure	Laser Yield
82.2% Ar, 17.5% Kr, 0.3% F ₂	18 psi	29.5 J
81.2% Ar, 18.5% Kr, 0.3% F ₂	17 psi	30.3 J
80% Ar, 19.7% Kr, 0.3% F ₂	16 psi	28.4 J
59.7% Ar, 40% Kr, 0.3% F ₂	15 psi	29.8 J

Preamplifier Strip Cathodes Zircar to suppress electron emission Deposition 30% larger than monolithic

Full Electra Laser System has been Tested for Single Shots and Short Bursts

Achieved 460 J for single shot experiments.

5 shot burst @ 5 Hz resulted in a total laser power of 1.6 kW or an average laser energy of ~320 J per shot

• Future laser gas recirculator on pre-amplifier will allow constant output energies at high laser powers.

Laser output energy measured 30 m from main amplifier

Key Components of a Krypton Fluoride (KrF) Laser

Pulsed Power System

- Solid State Switch Development
 - Switch lifetime tests
- Small Scale (250 kV, 7 kA) Solid State Pulser
 - Cathode durability tester for >10⁶ shots
 - Verify durability of solid state pulser

Development of an all Solid State Pulsed Power System

48kV Solid State Switch Development (with Multiple Silicon Thyristors)

Commercially available switch for \$4,000 (list price for one 48kV switch)

Switch is being used for bio/medical applications (very reliable)

Pulsed power upgrade of Electra's main amplifier require 2x48 switches (\$384,000 for switches not including quantity discount)

One of 10 lifetime testers. Each operates at 4kV, 7 kA, 400 ns FWHM.
All lifetime testers are charged by single 1.5 kJ/s power supply.
Thyristor is tested for 1.7 M pulses per day (10⁸ pulses in 2 months).

No Thyristor has failed in the Lifetime Test Stand (as of April 1, 2008)

Station	# of shots	
	(as of 04-01-08)	
1	7 Million	
2	7 Million	
3	7 Million	
4	6.9 Million	
5	7 Million	
6	70 Million	
7	10.1 Million	
8	9.2 Million	
9	10.1 Million	
10	43 Million	

As of today, each station should have 12 Million additional shots

Small-Scale Solid-State System Under Construction

Picture shows the 12 stage Marx, which uses *APP* Thyristors. Magnetic switch and transit time isolator will be added to the system soon.

250 kV, 7.0 kA, 270 ns pulser with rep rate of 14 Hz

Expected life: >10⁸ pulses

3 stage Marx was tested for >10⁶ pulses at 5, 10, and 14 Hz

System will be used to test cathode durability and solid state Marx lifetime. PLEX LLC

• Development of Zirconia cathode

Zirconia will Replace Cordierite as Cathode Material

- Cordierite ceramic honeycomb cathode has been successfully operated continuously for 25,000 shots at 2.5 Hz, and 10,000 shots at 5 Hz.
- Zirconia has very similar cathode properties (electrical) but its mechanical strength is 5 times of cordierite.
- Full size zirconia cathode experiments are scheduled for June/July 2008.

Properties	Cordierite	Zirconia
Compressive Strength	350 MPa	1700 MPa
Modulus of Elasticity	70 GPa	351 GPa
Flexural strength	117 MPa	545 MPa @ 20 C
		351 MPa @ 800 C
Poisson's Ratio	0.21	0.31

Hibachi and Foils

- Scalloped Hibachi
- Foil Materials
- Foil Pressure Tester
- Foil Cooling

Thin Metal Foil Separating Diode Vacuum from Laser Gas Presently Operates in the Plastic Regime

Scalloped Hibachi will Significantly Reduce Stresses on Foil

scalloped hibachi

As rolled (yield) for annealed materials 304 SS: 49,100 psi Inconel 600: 60,100 psi (ATI Allegheny Ludlum)

location of

hibachi foil

Scolloped Hibachi Design has been Tested Successfully

Foil/Scalloped Hibachi tester applies pressure pulse at 1 to 5 Hz, combined with a laser displacement sensor.

1 mil 5052 Al foil has been tested for > 4,000 continuous pulses at 28 psi base pressure + 3.7 psi pulse without failure.

"Jet" Foil Cooling Technique Developed by Georgia Tech Full size experiments will be performed in April 2008

Jet Foil Cooling Technique Successfully Demonstrated on Bench at GA Tech

Georgialnstitute of Technology Summary

Primary KrF laser components are under continuous development and improvement pulsed power, cathodes, hibachi, foils, and cooling technologies, while full scale laser operations are undertaken.

A summary of previous developments and recent results on the Electra Laser System is presented at the NRL (John Giuliani) poster