Stress Driven Bubble Growth: Influence of Stress Gradient on Bubble Migration

S. Sharafat^{1*}, A. Takahashi², and N. Ghoniem¹

¹University of California Los Angeles ²Tokyo University of Science

18th High Average Power Laser Workshop

Hosted by Los Alamos National Laboratory

Hilton Santa Fe Historical Plaza 100 Sandoval Street, Santa Fe, New Mexico, USA April 8-9, 2008

🗱 Tokyo University of Science

*shahrams@ucla.edu

This work was supported by the US Navy/Naval Research Laboratories through a grant with UCLA.

OUTLINE

- 1. Formulation of He-Bubble Growth in stress gradient using Event Kinetic Monte Carlo (EKMC)
- 2. Single Bubble in a stress gradient
- 3. Collection of Bubbles in a stress gradient

Event Kinetic Monte Carlo

Helium bubbles are treated as particles

- Position vector
- Number of helium atoms
- Radius (Diameter)

An event can take place at each time step

Diffusion

- Diffusion
- Helium Implantation
- Coalescence
- Surface pore formation

Event (Diffusion Random Walk)

Diffusion of helium bubbles

• The diffusion is in 3-dimensions: random walk model

• Diffusion rate of a helium bubble

$$D_b = \left(\frac{3\Omega^{4/3}}{2\pi r^4}\right) D_s \qquad D_s = D_0 \exp\left(-\frac{E}{kT}\right)$$

Surface diffusion

- $\boldsymbol{\Omega}\,$: Atomic volume
- *r* : Radius of helium bubble
- D_0 : Diffusion Pre exponential
- *E* : Surface migration energy

J.H. Evans, JNM 334(2004), 40-46

Event (Diffusion in Stress Gradient)

Stress gradient acts as a driving force on bubble migration:
 <u>Change in total strain energy</u> → Bubble moves up a stress gradient

Event (Diffusion in Stress Gradient)

• Helium bubble migration in matrix

$$D_{b} = \left(\frac{3\Omega^{4/3}}{2\pi r^{4}}\right) D_{s} \qquad D_{s} = D_{0} \exp\left(-\frac{E}{kT}\right)$$
$$E_{bm} = -kT \log\left(\frac{D_{b}}{D^{*}}\right)$$

Strain Energy difference

$$\Delta E_{0 \to i} = \frac{4\pi r^3}{3} 3.01 \frac{\sigma_i^2 - \sigma_0^2}{2E} \quad (i = 1, 6)$$

• Diffusion of bubble

$$D_i = D_o^* \exp\left(-\frac{E_{bm} + \Delta E_{0 \to i}}{kT}\right)$$

Events (Coalescence)

Clustering of two helium bubbles

Calculation of helium bubble radius

Equation of state:

Pressure on the helium bubble surface:

$$PV = nkT$$

$$P = \frac{2\gamma}{r}$$

$$r = \sqrt{\frac{3nkT}{8\pi\gamma}}$$

J.H. Evans, JNM 334(2004), 40-46

Influence of Stress Gradient on Bubble Migration and Coalescence

W-Surface Stress State for HAPL

Following the heating/implantation transient the surface remains in a stressed state of about ~0.7 GPa (UMARCO):

Single Bubble Migration in a Stress Gradient

Stress Gradient Effect on Single 5-nm Bubble

Collection of Bubbles:

Migration PLUS Coalescence in a Stress Gradient

Stress Gradient Effect on Collection of Bubbles

Initial Conditions:

Depth Profile: Number of Bubbles: Ave. Bubble Radius: 0.02 μm – 0.5 μm 1000 1.84 nm

Bubble Distribution at 3×10^7 s at Given Stress Gradients

Summary & Conclusions

- Influence of stress gradients on He-bubble migration has been incorporated into the McHEROS Code
- Bubble moves up the stress gradient (compressive or tensile)
- Single bubble migration is significantly impacted for stress gradients > 100 MPa/µm
- Collection of Bubble in a stress gradient:
 - Bubbles move up towards the surface as a group
 - Stress gradient does not significantly increase bubble growth
 - Coalescence is not very sensitive to stress gradient
 - Surface pores are slightly larger for large stress gradients
- With a stress gradient bubble velocity is *x* 1/r
 Without a stress gradient velocity is *x* 1/r⁴ (surf. Diff.):
- Stress gradient reduces the relative velocities between small and large bubbles

Modeling Carbon Diffusion

M. Narula, S. Sharafat, and N. Ghoniem

Mechanical and Aerospace Engineering Department University of California Los Angeles

18th High Average Power Laser Workshop

Hosted by Los Alamos National Laboratory

Hilton Santa Fe Historical Plaza 100 Sandoval Street, Santa Fe, New Mexico, USA April 8-9, 2008

*shahrams@ucla.edu

This work was supported by the US Navy/Naval Research Laboratories through a grant with UCLA.

Carbon Diffusion in Tungsten

- Carbon is implanted between ~0.2 to ~1 μ m in W
- Carbon has been shown to diffuse deep after short time anneals (~8 μm at 2000 °C)
- In HAPL W-surface undergoes rapid temperature transients

Goal:

- Effect of rapid temperature transient on diffusion of C.

- Investigate impact of various (realistic) grain structures.

1. Carbon Diffusion Data

2. Grain-Structure Model

Carbon Diffusion in Grain Boundary region is higher than in Grain Matrix

*Adam Shepela, J Less Common Met. 26(1972) 33-43

Diffusion in Grain Boundary

- Self-diffusion in POLYCRYSTALLINE tungsten is much higher (T< 2500 °C)
- Implies that GB self-diffusion is faster by ~10³ 10⁴ (T < 2000 °C) and ~ 10² (T= 2500 °C)

• C-diffusion is taken to be a factor of ~ 100 higher in GB region

Carbon Diffusion Models

- Model (1):
 - Constant temperature anneal at 2000 °C with realistic grain structure
- Model (2):
 - Impact of HAPL temperature transient 600 to 2500 °C in <10⁻⁴ s
- Model (3):
 - Grain size effect: Fine grain W compared with Single-X W

Grain Structure Model

Ultra-fine Grain (UFG) Tungsten*

* Y. Ueda et al., 2006 US-J Workshop on Fusin High Power Density components and system and Heat Removal and Plasma-

Materials Interaction for Fusion, Nov. 15-17, 2006, Santa Fe, USA

Tungsten Grain (UFG) Model

Tungsten Grain Structure Model used / for Carbon Diffusion Simulation

UFG -W with Grain Boundary Region

Model (1): C-Diffusion for Anneal at 2000 °C

- Model 1 (UFG: fine grain)
 - Fine grains (with enhanced diffusion in 20-nm depth at GB)
 - Model dimensions (1.3 μ m \times 0.5 μ m)
 - Constant diffusion coefficient D = $5.24X10^{10}$ m²/s in the grains
 - 100 \times enhanced diffusion in 20-nm GB region
 - Initial implantation of C (in a region 0.2 μ m < X < 0.4 μ m)
 - C implantation concentration is constant: $3.5 \times 10^{16} \text{ cm}^{-3}$
- In HAPL maximum Carbon implantation ~1×10¹⁷ cm⁻³ per shot to a depth of ~0.8 μ m

Carbon concentration profile as function of time

Initial C implantation in W (0.2 μ m – 0.4 μ m): 3.5×10¹⁶ atoms/cm³

Model (2): Temperature Transient Effect

Temperature Transient in HAPL

• UMARCO code provides detailed temperature transients as a function of position:

• Couple the transients with the diffusion model

Carbon-Diffusion coefficient variation with time (grain matrix)

C-Diffusion for HAPL

• Animation shows the C-concentration as a function of time for HAPL

Comparison of Concentration Profiles

(at the centerline)

- Annealing "pushes" the Carbon deeper
- Annealing results in a more even distribution
- Rapid Temperature transient results in "pushing" carbon towards the surface

Model (3): Comparison between UFG – and Single –Crystal Tungsten (annealing 2000 °C)

- UFG-Tungsten with 20 nm grain boundary regions:
 D = 5.24X10¹⁰ m²/s in the grains D = 5.24X10¹² m²/s in GB region
- The plot shows initial C implantation with the red region (3.5x10¹⁶ C/cm³)

- 5.16 μ m long single crystal (D = 5.24X10¹⁰ m²/s)
- The plot shows initial C implantation with the red region (3.5x10¹⁶ C/cm³)

Summary

- Grain Boundary diffusion is significantly faster than in the matrix
- Realistic Grain structure was modeled based on UFG-W
- Modeled C-diffusion for annealing (T=2000°C) in UFG-W
- Modeled C-diffusion with HAPL temperature transient
- Compared UFG-W with Single-X W

Findings:

- C-diffuses rapidly (<10⁻⁴ s) at 2000 °C through the UFG sample (1.3 μ m)
- Near surface high temperature transients move Carbon towards surface and reduces diffusion into the W
- C concentration remains peaked for Single-X, while in UFG-W C diffuses throughout the thickness (5 μ m) for a 2000 °C anneal in < 0.001 s.

TOFE 2008: Submitted Abstracts

- A Unified Model for Ion Deposition and Thermomechanical Response in Dry Wall Laser IFE Chambers, J. Blanchard, Q. Hu, and N. Ghoniem
- Roughening of Surfaces under Intense and Rapid Heating," M. Andersen, A. Takahashi, N. Ghoniem
- Thermo-mechanical Analysis of the Hibachi Foil for the Electra Laser System," A. Aoyama, J. Blanchard, J. Sethian, N. Ghoniem, and S. Sharafat
- A Simulation of Carbon Transport in Implanted Tungsten," M. Narula, S. Sharafat, and N. Ghoniem
- A KMC Simulation of Grain Size Effects on Bubble Growth and Gas Release of Implanted Tungsten, A. Takahashi, K. Nagasawa, S. Sharafat, and N. Ghoniem
- Simulation of Pressure Pulses in SiC due to Isochoric Heating of PbLi Using a Laser Spallation Technique, J. El-Awady, H. Kim, K. Mistry, V. Gupta, N.Ghoniem, S. Sharafat

Backup Slides for C-diffusion modeling

Development of UFG Tungsten

- What is ultra fine grained tungsten?
 - Tungsten materials with very small grains (<100 nm) with some TiC dispersoids.
 - Development by Dr. Kurishita (Tohoku University)
- Fabrication
 - Mixing of powder of tungsten and TiC in Ar or H₂ atmosphere without oxygen.
 - Mechanical alloying
 - Degassing in vacuum
 - HIP process
- Advantages for plasma facing material
 - Little or no radiation (neutron, He) hardening
 - No significant blistering (H₂, He)
 - Superplasticity ~160 % (T>1670 K)
 - Higher re-crystalliation temperature (claim)

W-0.5TiC-H₂ exhibits superplasticity at and above 1670K, with a large strain rate sensitivity, *m*, of 0.5~0.6, that is characteristic of superplastic materials.

* Y. Ueda et al., 2006 US-J Workshop on Fusin High Power Density components and system and Heat Removal and Plasma-

Superplastic deformation of UFG W-0.5TiC-H₂

G.S.: 0.5 mm x 1.2 mm x 5 mm

1970K

an initial strain rate of 5 x 10⁻⁴ s⁻¹

Crosshead is arrested at ϵ = 160% to examine the specimen surface. I.G.L. stands for the initial gauge length of the tensile specimen.

* Y. Ueda et al., 2006 US-J Workshop on Fusin High Power Density components and system and Heat Removal and Plasma-

* Y. Ueda et al., 2006 US-J Workshop on Fusin High Power Density components and system and Heat Removal and Plasma-

Backup Slides for He-bubble Migration and Coalescence in a Stress Gradient

McHEROS Code Simulation of IEC Surface Pores

	Temperatur e	Implantation Rate (He/cm ² -s)	L _x (µm)	L _y (µm)	L _z (µm)
Model-1	730	2.2x10 ¹⁵	0.2	1.0	1.0
Model-2	990	8.8x10 ¹⁵	0.2	2.5	2.5
Model-3	1160	2.6x10 ¹⁶	0.2	5.0	5.0

• McHEROS provides an *EXPLANATION* for the oversized Surface Pores

McHEROS Stress Gradient: Methodology

Diffusion coefficient of a bubble (D_p) based on the surface diffusion (D_s) mechanism:

$$D_s = D_0 \exp\left(-\frac{E_m}{kT}\right) \qquad D_p = \frac{3\Omega^{4/3}}{2\pi r^4} D_s$$

Velocity and mobility of a bubble in a stress gradient field

$$V_p = B_p F_p \qquad \qquad B_p = \frac{D_p}{kT}$$

Effective diffusion coefficient of a bubble in a stress gradient field

$$D_{p}^{eff} = V_{p}\delta = B_{p}F_{p}\delta = \frac{D_{p}}{kT}F_{p}\delta = D_{p}\frac{F\delta}{kT} = D_{o}^{p}exp\left(-\frac{E_{m}^{eff}}{kT}\right)$$

The pre-exponential diffusion coefficient of bubble is estimated using:

$$D_0^p = \frac{v_0 \delta^2 V^p}{6\Omega}$$

$$V^p: \text{ Volume of bubble}$$

$$v_0: \text{ Debye frequency}$$

- I. The net migration energy (E^{eff}_{m}) of the bubble due to a stress-field can be calculated using the bubble diffusion coefficient (D^{eff}_{p}) .
- **II.** Then we apply the "Delta-Energy Rule" to calculate the migration energy of the bubble in 6 different directions.

Bubble Size Near Surface vs Bulk *

- 1000 appm He Implanted in Ni at RT.
- Uniform He implantation using degrader Al-foil (28 MeV He)
- Annealing time: 0.5 1.5 hr

Abundance of Near Surface Vacancies promotes rapid and large bubble growth

*CHERNIKOV, JNM 1989

Sub-Surface Break Away Swelling Contribution

- BREAK-AWAY Swelling (very rapid growth of bubbles) occurs at the subsurface
- However, because the bubbles bisect the surface the swelling is stopped by venting He.
- Time to BREAK-AWAY swelling DECREASES with higher Temps.

Explaining Low-E He-Implantation Results

- Abundance of near surface vacancies allow bubbles to grow rapidly to equilibrium size:
 → Large bubbles & low He-pressure
- Near the surface, Migration & Coalescence (M&C) plus rapid growth results in super-size bubbles.
- Super-large bubbles bisect the surface, thus providing a probable explanation for surface deformation and large subsurface bubbles.
- A network of deep interconnecting surface pores is rapidly set up which results in drastic topographical changes of the surface

McHEROS with Stress Gradient

Numerical Example:

- Diffusion of single bubble
 - Radius: 10nm
- Stress gradient in depth direction

McHEROS with Stress Gradient

Tracking a single bubble in a stress gradient at various temperatures

McHEROS with Stress Gradient

Tracking a single bubble in a stress gradient at various temperatures

55

Calculated Stress/Strain Transients in IFE FW

Event Kinetic Monte Carlo

How to pick an event

• Using the event rate v_i and uniform random number N Normalized sequence Random number $R(0 \sim 1)$ of event rates Physical time calculation $\Delta t = \frac{-\log R}{\sum v_i}$

Summary of US and Japanese Experiments of He-Implantation in W

UCLA He-Transport Code Development

Hybrid Helium Transport Code

Code	Method	Phenomena	Comments	
HEROS	Rate Theory	Nucleation, Growth, Transport	1-D; Unified Field Parameters in Bulk Material	
McHEROS	Kinetic MC	Growth,Transport,Coalescence	3-D; Discrete bubbles; Material Geometric Features; Surfaces	

Events (Surface pore formation)

Surface pore is formed without coalescence

Events (Helium implantation)

Helium implantation rate (= event rate)

Helium bubbles capture implanted helium atoms

• Linear relationship with the cross sectional area

