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Overview of direct-drive IFE studies

We've examined the robustness of the 500kJ
-TF pellet designs using hydrocode simulations.
n addition, we have begun studies of a ~300kJ
nigher gain shock ignited target.

Interested In the effects of different perturbations:
target: inner and outer surface perturbations

laser: drive asymmetry and laser imprint



FTF
500 kJ FTF targets: gain and stability vary with pulse shape
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The targets designs are based on a single pellet driven by
different pulse shapes; | . ~2-2.5 x 101°W/cm?
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Shock Ignition targets: ~300 kJ KrF pulse

Shock ignition targets in the range of 200-
300kJ laser energy have been studied*. L0000 , ,
In shock ignition, the (thick) target is driven on typical shock-ignition
a very low adiabat but to low velocities. A 1000 18€T pulse
final high-power short duration spike in laser
power creates a shock that ignites the target.
1D design work indicates gains of order 100
possible for E__,~200kJ, and fairly robust Lo

Ignition and burn conditions for E/| oo ~300kJ. o1
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Not shown: both targets will also have a thin CH overcoat

"R. Betti et al., Phys.Rev.Lett. 98, 155001 (2007)



Target and laser perturbations have been considered

low-mode drive variation
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Drive perturbations have been modeled with static drive asymmetry

These simulations account for drive asymmetries produced by the

aiming configuration, energy imbalance and mis-alignment among
the laser beams. The designs become sensitive to low-mode
Intensity perturbations at a level of 1-2%.

low mode (/=2-16) modeling
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A consistent, time-dependent model is being added to the FAST code



FTF low-mode modelling predicts robustness of FTF target to
Inner surface roughness

low mode (¢/=2-16) modeling
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FTF  Lower resolution studies show increasing
sensitivity for higher adiabats

low mode (¢/=2-16) modeling

Varying Outer Surface Perturbation
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Low-resolution 2D simulations
(resolving modes /=2-16) show that
designs with higher adiabat (higher
stability, less gain) are more sensitive
to low-mode perturbations.



FTF High-resolution 2D simulations with realistic (“NIF-spec”)
outer surface perturbations predict little gain degradation

Result: With NIF-spec.-equivalent outer surface finish, the RX5.0 pulse
gives a yield of 27 MJ (G=55), ~90% of clean-1D yield

Simulations have 660 pts (r) X 2048 pts (0) over a half sphere,
and can resolve modes from 2-512. RX5
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Finding the optimum gain in 2D: using RX pulses

Increasing the foot pulse amplitude increases the adiabat
- decreases the gain (1D)
- reduces RT at high mode (2D)
- Increases sensitivity to low-mode asymmetry (2D)

Relaxation pulse (RX) family of FTF designs
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FTF After targets have gone 75% towards stagnation,
ablative stabilization effects are evident

QR D
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FTF
As the targets near gain 1, they have either failed or are burning well
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FTF In general, higher resolution studies show more
sensitivity to outer surface perturbations
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High-resolution 2D simulations (resolving modes /=2-512) show that designs are

more sensitive to perturbations than the low mode studies suggest. While inner

surface roughness sensitivity leaves some margin for error, the design is close to a
“cliff” with regards to outer surface sensitivity.




Al High resolution simulations show that the targets can survive

expected surface perturbations and still give significant yield.

high-resolution S|mulat|ons resolved with modes /=2-512
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However, the large (implied) scatter in the results, as well as the stagnation
Images, indicates that low-modes dominate the results when outer surface
perturbations are applied.

This implies a need for 3D simulations.
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Shock Ignition studies: ~300 kJ KrF pulse

1D design work for E, .. ~300kJ shows the
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Shock Ignition studies: ~300 kJ KrF pulse

2D low mode simulation results (64 6 pts, /=2-16) indicate that
this robustness survives in 2D.
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Summary

We have investigated FTF and shock-ignition target
designs with low- and high-resolution 2D simulations.
Both laser and target surface perturbations have been
simulated.

FTF-type targets can survive perturbations of order
“NIF-spec.” with useful yields. Stabilization of higher
frequency (/>100) modes is possible with adiabat
tailoring technigues, and performance appears to be
dominated by low-modes.

Outer surface finishes may be marginal, but 3D
simulations are needed to resolve this.

Shock ignition designs promise higher gains and better
stability. Our 1D and low-mode 2D studies look good so
far, but high-resolution studies (underway) are needed.
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