Activities in

Helium Transport, Carbon Diffusion, SiC/SiC Isochoric Heating, & SiC Properties Database

Shahram Sharafat* and Nasr Ghoniem with significant contributions from A. Takahashi¹, J. El-Awady, A. Aoyama, N. Manmeet, and Q. Hu

and collaborative interactions with K. Yutai², M. Sawan³, N. Parikh⁴, and L. Snead²

Mechanical and Aerospace Engineering Department University of California Los Angeles

¹ Tokyo University of Science
 ²Oak Ridge National Laboratory
 ³University of Wisconsin Madison
 ⁴University of North Carolina at Chapel Hill

17th High Average Power Laser Workshop

🗱 Tokyo University of Science

Naval Research Laboratory, Washington D.C. October 30 and 31, 2007 *shahrams@ucla.edu

S. DEPARTMENT OF ENERGY

This work is sponsored by the US Department of Energy, NNSA/DP and Naval Research Laboratories through a grant with UCLA.

Students Active in HAPL

Current Students:

J. El-Awady M. Anderson A. Aoyama A. Hyoungil N. Manmeet

New Students:

Dariush Seif Can Erel Koji Nagasawa*

Outline

Helium Modeling (McHEROS)

Carbon Diffusion Modeling

SiC Spallation Testing for Isochoric Heating

SiC Material Properties Database (FusionNET©)

Helium Transport Code Development

- Helium Transport requires Multiscale Modeling (atomic clusters \rightarrow bubbles)
- Rate Theory uses unified field parameters
- KMC Simulation can model geometric features

Code	Method	Phenomena	Comments
HEROS	Rate Theory	Nucleation, Growth, Transport	2-D; Unified Field Parameters in Bulk Material
McHEROS	Kinetic MC	Growth, Transport	3-D; Discrete bubbles; Material Geometric Features; Surfaces

McHEROS Code Simulates IEC Surface Pores*

	Temperature (°C)	Implantation Rate (He/cm ² -s)	L _x (µm)	L _y (µm)	L _z (µm)
Model-1	730	2.2x10 ¹⁵	0.2	1.0	1.0
Model-2	990	8.8x10 ¹⁵	0.2	2.5	2.5
Model-3	1160	2.6x10 ¹⁶	0.2	5.0	5.0

• McHEROS provides an *EXPLANATION* for the oversized Surface Pores

Simulation and Experiment

McHEROS Code Upgrade

- McHEROS Code now includes the effect of stress gradients.
- Stress gradients act as a driving force (F_p) on bubbles (strain energy): Bubbles move up the stress gradient

$$\frac{\text{Velocity } (V_p) \text{ of spherical pore:}}{V_p = B_p F_p} \xrightarrow{B_p: \text{ bubble mobility}}_{F_p: \text{ driving force}} B_p = \frac{D_p}{kT} = \frac{3a_o}{2\pi kTr^4} D_s$$

$$F = -\frac{\partial \Delta E_{tot}}{\partial z} = -v_p \times 3\delta \times \sqrt{E} \times \frac{\partial \sigma}{\partial z}$$

McHEROS Stress Gradient: Methodology

Diffusion coefficient of a bubble (D_p) based on the surface diffusion (D_s) mechanism:

$$D_s = D_0 \exp\left(-\frac{E_m}{kT}\right) \qquad D_p = \frac{3\Omega^{4/3}}{2\pi r^4} D_s$$

Velocity and mobility of a bubble in a stress gradient field

$$V_p = B_p F_p \qquad \qquad B_p = \frac{D_p}{kT}$$

Effective diffusion coefficient of a bubble in a stress gradient field

$$D_{p}^{eff} = V_{p}\delta = B_{p}F_{p}\delta = \frac{D_{p}}{kT}F_{p}\delta = D_{p}\frac{F\delta}{kT} = D_{o}^{p}exp\left(-\frac{E_{m}^{eff}}{kT}\right)$$

The pre-exponential diffusion coefficient of bubble is estimated using:

$$D_0^p = \frac{v_0 \delta^2 V^p}{6\Omega}$$

$$V^p: \text{ Volume of bubble}$$

$$v_0: \text{ Debye frequency}$$

I. The net migration energy (E^{eff}_{m}) of the bubble due to a stress-field can be calculated using the bubble diffusion coefficient (D^{eff}_{p}) .

II. Then we apply the "Delta-Energy Rule" to calculate the migration energy of the bubble in 6 different directions.

McHEROS with Stress Gradient

Numerical Example:

- Diffusion of single bubble
 - Radius: 10nm
- Stress gradient in depth direction

McHEROS with Stress Gradient

Tracking a single bubble in a stress gradient at various temperatures

9

McHEROS with Stress Gradient

Tracking a single bubble in a stress gradient at various temperatures

10

Planned Activities

- Near Term:
 - Superimpose <u>near-surface</u> strain field gradient
 - Simulate Bubble Migration/Coalescence (MC) for HAPL <u>transient stress gradient</u>.
 - Add temperature field to MCHEROS Code
 - Simulate <u>transient temperature gradient</u> effect on bubble MC
- Long Term:

- Add Near-surface
 <u>Bubble- Threading</u>
- Include 3-D Grain Structure Features
- Add HEROS-based <u>Bubble Nucleation</u> (Rate Theory Eqs.) to MCHEROS

Outline

Helium Modeling (HEROS – McHEROS)

Carbon Diffusion Modeling

SiC Spallation Testing for Isochoric Heating

SiC Material Properties Database (FusionNET©)

Carbon Diffusion in Tungsten

- Previous modeling of Carbon diffusion assumed homogeneous W- material; no Grain Boundary (GB).
- Experiments show C concentrating along GB (16th HAPL, UNC)
- Need to account for fast diffusion along GBs
- Geometric features requires 3-D diffusion modeling

Carbon Implantation in Tungsten*

Step 1:

- Carbon implantation
- Polycrystalline W
- 1.4x10¹⁹ cm⁻²
- Room temperature ۲

Step 2:

Thermal anneal

4.5 µm

1.0 μm

- Electrical resistance heating
- 2000°C; 5 minutes ۲

Particles observed along grain boundaries. • Observed to a depth of 7.6 μ m from surface.

Implanted surface

Diffusion along GB in Tungsten

- GB Diffusion is the dominant diffusion mechanism in POLYCRYSTALLINE tungsten below 2100 C
- Self diffusion in GB is 3– 4 orders of magnitude faster than in matrix

• Similarly, C-diffusion is also faster in GB compared with matrix.

3-D Grain Model

A 3-D Grain Structure Model with Grain Boundary (GB) regions

Initial Results of 3-D Carbon Diffusion Model

- Assigned higher diffusion coefficient (× 100) to GB-region
- Single crystal shows rapid diffusion along GB.

Diffusive Flux, C[mol/(m²-s)]

Planned Activities:

- Calibrate Diff. coeff. with UNC experiments
- Create realistic Tungsten Multi-Grain Model.
- Add strain-gradient effect on C-diffusion
- Model WC₂ formation and add to C-Diff.
- Simulate HAPL conditions (T-gradients)

Outline

Helium Modeling (HEROS – McHEROS)

Carbon Diffusion Modeling

SiC Spallation Testing for Isochoric Heating

SiC Material Properties Database (FusionNET©)

Isochoric Heating Conditions

Blanket Nuclear Heating*:

<u>At 5 Hz:</u>

- Peak power density in PbLi is ~92 W/cm³
- Peak power density in SiC is 31 W/cm³

M. Sawan, 16th HAPL, Dec. 2006

SiC/SiC Tube filled with PbLi

- Volumetric Energy per shot: PbLi: 18.4 MJ/m³ SiC : 6.2 MJ/m³
- Isochoric heating results in rapid expansion of SiC and PbLi
- Integrity of SiC/SiC is a concern

Pressure Due to Isochoric Heating

Pressure (p):

$$p=\gamma \frac{E}{V}$$

- *E*: Energy; *V*: Volume;
- γ is the Gruneisen constant: (thermal expansion coefficient multiplied by the volume divided by the heat capacity and compressibility):

$$\gamma = \frac{\alpha v}{C_p \kappa_s}$$

 $\gamma_{SiC} \sim 0.9 \ (<1000 \text{ K})$ $\gamma_{Pb} \sim 3.1 \ (RT)$ $\gamma_{Li} \sim 0.3 \ (RT)$ $\gamma_{PbLi} \sim 2.6 \ (RT)$

Gruneisen Parameter

Pressure Due to Isochoric Heating

Material	γ	E/V (MJ/m ³)	P (MPa)
PbLi	2.6	18.4	48.3
SiC	1	6.2	6.2

- Ignoring isochoric heating in SiC: ~50 MPa pressure is applied to the inside wall of the coolant channel within a Δt ~ 10 ns
- Concerned about impulse loading of SiC/SiC
- SiC/SiC PbLi Interface: CVD SiC layer (~1 mm)
- Matrix cracking strength ~120 MPa for SiC/SiC

Planned Activities:

- Perform <u>Spallation Experiment</u> to test impact of nanosecond pressure pulses (1) CVD SiC [for calibration] and (2) SiC/SiC samples
- Expose 1-mm thick CVD SiC to: 50, 100, 150, and 200 MPa (~ 10 ns)
- CVD-SiC Samples are being prepared for experiment

Outline

Helium Modeling (HEROS – McHEROS)

Carbon Diffusion Modeling

SiC Spallation Testing for Isochoric Heating

SiC Material Properties Database (FusionNET©)

SiC Material Properties Database

FusionNET[©] is an Interactive Web-based Fusion Material Properties Database

- Currently being maintained with help from two students: Evelyn Zarraga and Sandy Chow
- <u>http://fusionNET.seas.ucla.edu</u> or <u>http://fusionet.seas.ucla.edu</u>
- Best viewed using IE-browser due to lack of "Scalable Vector Graphics" (SVG) support by Mozilla,
- In support of HAPL, FusionNET© is reproducing data from the SiC-Handbook (ORNL)
- Keeping with the tradition of FusionNET[®] the SiC data contains all of FusionNET's features, e.g.:
 - Scalable Vector Graphics
 - Down-loadable Tabulated Data
 - Computable Correlations
 - References

Sample of FusionNET© SiC Data

Sample of FusionNET© SiC Data

http://fusionnet.seas.ucla.edu - View Data - Microsoft Internet Explorer

Caption: Swelling and Saturation of CVD SiC in the Point-Defect Swelling Regime (linear plot)

Author: Snead, L.L., T. Nozawa, Y. Katoh, T-S. Byun, S. Kondo, D.A. Petti,

Title: Handbook of SiC Properties for Fuel Performance Modeling

Journal: Journal of Nuclear Materials, 2007, Volume 371, Page 329-377

View REF

T _{irr} =200°C		T _{im} =300°C		T _{irr} =400°C	T _{irr} =500°C	
Neutron Dose (dpa)	Density Change (%)	Neutron Dose (dpa)	Density Change (%)	Neutron I (dpa)	Back Forward	tron Dose Density C (dpa) (%)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0833 0.0851 2.4191 2.4191 2.4124 2.9709 2.9716	0.3045 0.0179 0.2328 0.3672 0.0806 0.0448 1.6119 1.3970 1.8000 1.8985 2.0955 2.0149	0.5888 1.4078 2.3011 3.9869 4.5900 7.6946	1.6746 1.7104 1.4955 1.6119 1.5224 1.9970	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	Save Background As Set as Background Copy Background Set as Desktop Item Select All Paste Create Shortcut Add to Favorites View Source	
Report problems	to webmaster at: eve/) ated data can be co	<i>in.zərrəgə@uclə.edu</i> pied and pasted	, include plot id#: 608 on a spreadsheet.	in subject. You may a	Encoding Print Refresh	×cel.
					Convert to Adobe PDF Convert to existing PDF Export to Microsoft Excel	
						-
]					G Google Search Send To Page Info	🔹 🖉 Internet

_ 🗆 🔀

Sample of FusionNET© SiC Data

FusionNET© SiC Database

Planned Activities:

- Complete reproducing all 35 graphs (have completed ~1/2)
- Add 4 more Tables of property summaries (completed 1)
- Hyperlink all entities in Tables (Figures and Equations) to FusionNET entities.

Summary

Helium Modeling (MCHEROS):

Stress- & Temp. Gradient effects and capability of modeling material features (GB, surface) under development

<u>Carbon Diffusion Modeling:</u>

3-D Grain models including Grain-Boundaries for more accurate C-diffusion simulation is under development

- <u>SiC Spallation Testing for Isochoric Heating:</u> CVD-SiC plate is being prepared for spallation energy calibration and testing
- <u>SiC Material Properties Database (FusionNET©):</u> CVD-SiC material properties is being completed

Backup Slides

HIP'd W-F82H Sample (ITER, JAEA)

 Hot Isostatic Pressure (HIP) bonded Tungsten to F82H

Sample from ITER Development JAEA (Japan)

Bond Strength: Depends on Coating Elastic Properties & Density

Since Elastic properties of the coating depend on processing in a statistical manner \rightarrow Predicted interfacial strengths will have statistical variations

$$\sigma_{BOND} = 1050 MPa (10\% W - Young's)$$

$$\sigma_{BOND} = 450 MPa (100\% W - Young's)$$

Reported 14th HAP

1200 1050 1050 M Plastic Modulus 150 Milen a stic Modulu Obond 900 750 450 MPa 600 450 300 150 Stress(MPa) -150 -300 -450 -600 -750 -900 -1050 -1200 -1350 -1500 -1650--1800 Input Stress Wave -1950 -2100 -2250 -2400 80 100 120 140 160 180 200 220 240 260 280 30C 20 40 60 Time(ns)

31

VPS-W Test Matrix (PPSI/ORNL)

- Vacuum Plasma Sprayed (VPS) samples supplied by PPI (S. O'Dell).
- W-Coatings were polished to ~50 µm thickness at ORNL (G. Romanoski)

Sample Name	Sample Number	Total Thick. (mm)	Steel Substrate (mm)	W-Coating (mm)
V2-03-370	Sample01	1.14 (±0.01)	1.0939	0.04610
V2-03-392*	Sample02	1.20 (±0.08)	1.1510	0.04900
V2-04-388	Sample03a			0.04945
V2-04-388	Sample03b			0.04960
V2-03-393	Sample04	0.99 (±0.01)	0.9494	0.04060
V2-05-153	Sample05	1.22 (±0.01)	1.1706	0.04940
V2-05-155	Sample06	1.20 (±0.02)	1.1511	0.04890
V2-05-176	Sample07	1.21 (±0.01)	1.1609	0.04910
V2-05-184	Sample08	1.18 (±0.04)	1.1326	0.04745
F82H Substrate	Sample09a	1.16 (±0.01)	1.1600	
F82H Substrate	Sample09b	1.17 (±0.01)	1.1700	
HIP	HIP	1.15 (±0.01)	1.1000	0.05000

TEST MATRIX: VPS W-Coated Steel Samples

* 600°C Preheat

Yellow = Tested

Time Sequence of Pore Evolution (IEC Conditions,730 °C)

Bubble Size Near Surface vs Bulk *

- 1000 appm He Implanted in Ni at RT.
- Uniform He implantation using degrader Al-foil (28 MeV He)
- Annealing time: 0.5 1.5 hr

Abundance of Near Surface Vacancies promotes rapid and large bubble growth

*CHERNIKOV, JNM 1989

Sub-Surface Break Away Swelling Contribution

- BREAK-AWAY Swelling (very rapid growth of bubbles) occurs at the subsurface
- However, because the bubbles bisect the surface the swelling is stopped by venting He.
- Time to BREAK-AWAY swelling DECREASES with higher Temps.

Probable Explanation of IEC Results

- Abundance of near surface vacancies allow bubbles to grow rapidly to equilibrium size:
 → Large bubbles & low He-pressure
- Near the surface, Migration & Coalescence (M&C) plus rapid growth results in super-size bubbles.
- Super-large bubbles bisect the surface, thus providing a probable explanation for surface deformation and large subsurface bubbles.
- A network of deep interconnecting surface pores is rapidly set up which results in drastic topographical changes of the surface

Effects of Carbon Implantation (ORNL/UNC/UCLA)

- Issue: About 6.8x10¹⁹ per shot Carbon atoms are released from the 365 MJ Target (10 m Chamber):
 - ~1.7 appm per shot Carbon in Tungsten → in about 1x10⁶ shots C/W ~ 1.7 (1.2 days @ 10 Hz)
 - ~0.7 appm per shot Carbon in SiC → in about $1x10^6$ shots C/W ~ 0.7 (1.2 days @ 10 Hz)
- Goals:
 - (1) Investigate the <u>Behavior of Carbon Implantation</u> :
 - Free or bound Carbon (WC and W_2C)?
 - Release of Carbon from surface or Diffusion of Carbon toward W/Steel Interface ?
 - (2) Investigate Helium Release from Carbon Implanted Region :
 - Helium release

• Experiments:

Follow Sample Handling Procedure

- (1) UNC Carbon Implantation (Single-X W) Steady State followed by 1 Annealing Cycle:
 - Implantation at T = 850° C, <0.5 MeV
 - Total C-Fluence = 1.6×10^{22} C/m² (eq. to ~ 3×10^{5} shots or ~ $\frac{1}{2}$ day at 10 Hz) \rightarrow C/W ~ 0.5
 - Anneal at 2000° C for ~430 sec (total time above 1000 C for ~3x10⁵ shots)
 - Determine depth profile and density of Carbon & Perform Hardness measurements
 - (2) UNC Helium Implantation (use Carbon exposed SX-W). Step wise He followed by 2000 C annealing:
 - Implant 1x10¹⁹ ³He/m² at 850° C, flash anneal at 2000° C in 1000 or 100 steps
 - Determine Helium release and depth profile.
- Modeling:
 - Modify Carbon Diffusion model (UCLA) to include WC and W2C formation
 - Add Carbon Implantation/Carbide Formation to the HEROS code He model (UCLA):
 - Account for large damage rates caused during C-implantation and short time at T.