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Advanced Chamber Based on Magnetic Intervention
Concept Using Cusp Coils (from last time)

Use of resistive wall (e,g SiC) in
blanket to dissipate magnetic VAGUUM
energy (>90% of ion energy can be cols VESSEL
dissipated in the walls).

Initial chamber schematic from
Bertie Robson (with cone-shaped
chamber blanket concept).
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The initial configuration was —
rotated 90° for the blanket analysis

as this seems to favor the

maintenance scheme.
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Dump plates to accommodate all
ions but at much reduced energy

(<10%).

Dump plates could be replaced L sm
more frequently than blanket.
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 For example case with ~10% of ion

Ion Energy Deposition and Thermal Response of Dump
Plates Estimated for Cone-Shaped Chamber

energy on plate, max. W temp. ~2200°C '°" PU™P Plat
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1-mm W + 3.5 mm SiC/SiC

W Density = 19350 kg/m?

Surface Coolant Temp. = 500°C

h =2 kW/m>-K

367 MJ DD Target Spectra

1 pm Ion Dump at 6 m from chamber center

Dump area = 123 m?

5um Fraction of ion energy on dump = 0.1
Dump duck bill opening =1m

1400 Blanket thickness = 0.7 m
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Revised ion energy on dumps:

- ~71.7% within 0.5 us
- ~23% over 0.5-1.5 us
Major change, ~30% ion energy on dumps

If dry wall dump within chamber, need ~30% of chamber area for dump
Then, why not design whole chamber the same way?

Blanket
Thickness



Seems More Advantageous to Position Dump Plate In

SeRarate Smaller Chamber

Ion Dump Ring chamber

e Could use W dry wall
dump, but would require
large surface area and same
problem with
thermomechanical response
and He implantation

e Could allow melting (W or
low MP material in W)
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Hybrid case

* Dry wall chamber to satisfy
target and laser
requirements

e Separate wetted wall
chamber to accommodate
ions and provide long life

e Have to make sure no
unacceptable contamination
of main chamber



Scoping Analysis of an Example Ring Chamber

e Some flexibility in setting chamber major and minor radii
so as not to interfere with laser beams
° e.g., With R .. /R .. =8/2.7 or 9/2.4 m, and assuming 35 % w

of wetted wall area sees ion flux with a peaking factor of 1: 17777

- Ion dump area = 300 m? (/777774 A
- From 0 to 0.5 us, q°° = 4.53x101° W/m? Coolant
- From 0.5 to 1.5 us, q”’= 6.56x101° W/m?

e Three cases:
- W with phase change
- Low MP metal (e.g. Be) in high porosity W
(~80-90% ) which provides integrity and
could help retain Be melt layer
- Wetted wall chamber with Pb as example
material
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Temperature and Phase Change Thickness Histories for
W, Be and Pb for Example Case

Temperature (°C)

350 M] target (ion energy = 87.8 MJ)

Ion dump area = 300 m?

From 0 to 0.5 us, q”° = 4.53x10'° W/m? (7.7 % of ion energy)
From 0.5 to 1.5 us, q”’= 6.56x10'° W/m? (22.3% of ion energy)
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Maximum Temperature and Phase Change Thicknesses for W,

Be and Pb as a Function of Ion Dump Area
e 350 MJ target (ion energy = 87.8 MJ)

PY Evaporation lOSS per ShOt relatively mOdeSt Evaporated Thickness of Be, WA?:: Pb as a Function of Ion Dump
1.E-04
for W but could be a concern for Be (1 05 . .
. . R
nm/shot ~ 0.43 mm/day) _1E06 o
oyge ° 5 - HBe
o Stability of melt layer is a concern P, 2; . ) Aw
e  Would Be in a porous W matrix be more 2 E-09 . " =
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* For wetted wall in particular, the evaporated = « Eff. q over time 0-0.5
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material (e.g.Pb) must recondense within a 1.E-13 | * Eff.  over time 0.5-1.5 A
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Wetted-Wall Concept Could Consist of a Porous Mesh Through
Which Pb Oozes to Form a Protective Film

 Need to make sure that protective film is reformed prior to each shot
- radial flow through porous mesh
- circumferential flow of recondensed Pb
- no concern about any droplets falling in chamber

Lonninzis . Porous

1 mesh

Pb flow A\

IIIIIIIII

Liquid recycling

==
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Film Condensation in Ion Dump Chamber

0.5
Y 7 e P
Jnet = RO c Tg0.5 e T;)'S

j.t= net condensation flux (kg/m2-s)

M = molecular weight (kg/kmol)

R = Universal gas constant (J/kml-K)

I" = correction factor for vapor velocity towards film
o,, O, = condensation and evaporation coefficients
P, T, = vapor pressure (Pa) and temperature (K)

P;, T; = saturation pressure (Pa) and temperature (K)

of film
Aug. 8-9,2006

Example Scoping Calculations

* Ion energy from 350 MJ target =
87.8 MJ

- 7.7% of ion energy to dump over
0-0.5 us

- 22.3% of ion energy over 0.5-1.5 us

e Evaporated thickness and vapor
temperature rise from ion energy
deposition in ion dump chamber

e Liquid Pb as film material

e Conservatively small ion deposition
area = 220 m?
e.g. 35% of chamber with R
and R

=8 m

major ~
UkJE

minor = 2 m
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Pb Vapor Density as a Function of Vapor Temperature Prior to Next

[ ] [ ]
Scoping Analysis of Pb shot
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Depending on final vapor
temperature, vapor density prior
to next shot is about 1-10 times
higher than saturated vapor
density at assumed wetted wall
temperature of 773 K (1.75x103
kg/m? or ~0.01 mTorr at ST)
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Status of Blanket Study for Magnetic Intervention

Chamber
* More detailed study of blanket using Pb-17Li and
SiC,/SiC
- Neutronics
- Fabrication

- Assembly and maintenance

- Thermal-hydraulics

e Initial study of blanket using flibe and SiC//SiC

- Possible configurations

-  Neutronics

To be reported by M. Sawan and G. Sviatoslavsky

v\_
Aug. 8-9, 2006 HAPL meeting, GA 11 UCsSD



Self-Cooled Blanket Concept Coupled to a Brayton Cycle
(Pb-17Li + SiC,/SiC and Flibe + SiC,/SiC)

Blanket Rchamber Max. SiC T Max. SiC/Cool T Coolant Tin Coolant Tout Coolant DP Cycle eff.

Pb-17Li o6m 1000°C 900°C 483°C 799°C ~0.3 MPa 50%
Pb-17Li o6m 1100°C 950°C 580°C 930°C ~ 0.3 MPa 55%
Flibe o6m 1000°C 912°C 519°C 700°C ~1 MPa 46%
Flibe o6m 1100°C 1010°C 590°C 790°C ~1 MPa 50%
0.58
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- SIC/SiC /
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 From simple estimate for flibe with same blanket configuration as Pb-17Li:
- Flibe low Re and poor heat transfer properties result in lower cycle n and higher AP
for given SiC/SiC T, constraint.

max

* Need to perform analysis for optimized flibe configuration



Summary

* Scoping study of self-cooled Pb-17Li + SiC/SiC blanket concept for use
in the magnetic-intervention cone-shaped chamber geometry completed

* Initial study of flibe + SiC/SiC blanket started, needs to be completed
based on neutronics calculations and optimized configuration

e Separate dump chamber with melted solid wall or wetted wall assessed
for magnetic intervention case

-  Much relaxed atmosphere requirements for separate dump chamber
- Encouraging results as condensation is very fast
- Need to ensure no unwanted contaminants in main chamber

- Need more detailed design of dump chamber configuration including how to
recycle liquid for wetted wall concept

 Future work
- Complete flibe+SiC,/SiC blanket scoping study
- More detailed design of separate dump chamber



