# UW First-Wall Threat Spectra Calculations

## John Santarius and Greg Moses University of Wisconsin



HAPL Project Meeting General Atomics August 8-9, 2006



### In the Present Approach, "Ghost" Zones Move through Hydro Zones

#### • Ghost zones interact with zone boundaries, but only as they pass through them.



Fusion Technology Institute, University of Wisconsin



- Check all zones for ratio of  $\kappa\lambda$  to dr in both directions.
  - $\succ$   $\lambda$  is mean free path.
  - $\succ$  k is a chosen multiplier, typically 3.
- If  $\kappa \lambda < dr$  for a zone, use pure hydro.
- If  $\kappa \lambda \ge dr$  for a zone, move through next zone in **u** direction, depositing momentum and energy, for time step  $\delta t$ =time of next zone boundary contact.
- Adjust radii of zones.
- Repeat process until dt is reached or no zones satisfy  $\kappa \lambda \ge dr$ .
- Renumber zones, if necessary.



- $0 \equiv$  attached hydro
- $1 \equiv$  hydro detached on inner edge
- $2 \equiv$  hydro detached on outer edge
- $3 \equiv$  hydro detached on both edges
- $4 \equiv$  detached ghost zone
- $5 \equiv$  ghost zone detached on trailing (inner) edge only
- $6 \equiv$  ghost zone detached on leading (outer) edge only
- $7 \equiv$  zone ready to be renumbered



Hydro subvector elements are  $\{j, r_j, r_{j+1}, u_j, u_{j+1}\}$ , where Name Definition Place Lagrangian index of hydro zone 1 1 position of inner edge of hydro zone 2 ri 3 position of outer edge of hydro zone  $r_{j+1}$ velocity of inner edge of hydro zone 4  $\mathcal{U}_{j}$ 5 velocity of outer edge of hydro zone  $\mathcal{U}_{j+1}$ 



#### **Ghost Subvector Components**

Ghost subvector elements are  $\{j, k, l, q_j, s_j, v_j, w_j, \hat{w}, f_{dt}, \delta t, k_w\}$ , where Name Definition Place original Lagrangian index of ghost zone 1 i 2 k index of Lagrangian zone through which ghost zone's inner edge is attached or passing 3 index of Lagrangian zone through which ghost zone's outer edge is 1 attached or passing position of inner edge of ghost zone 4  $q_j$ 5 position of outer edge of ghost zone  $S_{j}$ 6 velocity of inner edge of ghost zone  $v_j$ 7 velocity of outer edge of ghost zone  $W_i$ 8 ŵ direction of motion (positive is outward) 9 accumulated fraction of dt used during this subcycle of moving fdt the ghost zone 10 δt partial time substep for calculation in progress 11 flag for zone motion:  $k_{w}$ 0=no1=yes 2=yes; reattach leading zone edge at end of  $\delta t$ 3=yes; reattach trailing zone edge at end of  $\delta t$ JFS 2006 Fusion Technology Institute, University of Wisconsin



#### Lagrangian Zone Mass Density Falls Steeply

Time= 1.00914×10<sup>-10</sup>



Fusion Technology Institute, University of Wisconsin



#### Lagrangian Zone Velocity Evolution for Mean Free Paths > Shock Thickness

Time =  $3.0001 \times 10^{-9}$ 



Fusion Technology Institute, University of Wisconsin



#### Lagrangian Zone Mass Evolution for Mean Free Paths > Shock Thickness

Time =  $4.00228 \times 10^{-11}$ 



Fusion Technology Institute, University of Wisconsin



- Have made progress with Mathematica<sup>®</sup> code for analysing velocity transfer between hydro and long mean-free path zones.
- Some debugging remains to be done.
- Should give a reasonable qualitative picture of the effect of long mean free paths on the ion threat spectra.



**Back Pocket** 



### DT Core, DT-CH Shock, and CH-Au Shock Will Exemplify the Issues

- Neutrons get produced within ~30 ps.  $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{10}$   $10^{$
- Each point represents a Lagrangian zone of constant mass.





Fusion Technology Institute, University of Wisconsin



#### At 34.592 ns, the DT-CH Shock Thickness and Incoming Ion Mean Free Paths Become Comparable

|                              | DT<br>Core             | DT-CH<br>Shock         | CH-Au<br>Shock         |
|------------------------------|------------------------|------------------------|------------------------|
| r <sub>shock</sub> (cm)      | < 0.001                | 0.026                  | 1.1                    |
| $\Delta r_{\rm shock}$ (cm)  | < 0.001                | 0.02                   | 0.004                  |
| v <sub>shock</sub> (cm/s)    | 6.6 x 10 <sup>6</sup>  | 5.5 x 10 <sup>8</sup>  | 8.6 x 10 <sup>7</sup>  |
| $n_i (cm^{-3})$              | 1.5 x 10 <sup>26</sup> | 5.1 x 10 <sup>24</sup> | 5.0 x 10 <sup>18</sup> |
| T <sub>i</sub> (keV)         | 276                    | 86                     | 2.8                    |
| T <sub>e</sub> (keV)         | 72                     | 47                     | 0.69                   |
| Ave. charge state            | 1                      | DT 1<br>CH 1           | CH 1<br>Au 36          |
| $\Delta r_{\rm shock}$ / mfp | > 1000                 | 1.1                    | 0.001                  |

Fusion Technology Institute, University of Wisconsin