Systems Modeling Update including Magnetic Deflection

Wayne Meier LLNL

HAPL Program Meeting General Atomics August 8-9, 2006

- Additional sensitivities studies
- Preliminary look at impact of magnetic diversion
 - Considered economic benefit of smaller chamber in generic sense
 - Still need to add new model for MD Chamber (geometry scaling, collector plates, materials and costs)
 - Also need to add cost for magnets
- Effects of including direct conversion
 - Efficiency calculations modified to account for some fraction directly converted to stored energy needed for laser pulsed power
 - Determine allowable cost for DC hardware (as opposed to bottoms up cost estimate since we don't have a detailed design)

$$COE = \frac{FCR \cdot TCC + OM}{0.0876 \cdot P_n \cdot CF} + D$$

- $COE = Cost of electricity, c/kW_eh$
- FCR = Fixed charge rate, 0.0966/yr
- TCC = Total capital cost, \$M

With these assumptions: Capital charges → 1.30 ¢/kWeh per \$B TCC O&M cost → 1.34 ¢/kWeh per \$100M annual

- OM = annual operations & maintenance costs, \$M
- D = decommissioning charge, 0.05 ϕ/kW_eh)
- $0.0876 = (8760 \text{ h/yr}) \times (1000 \text{ kW/MW}) \times (10^{-8} \text{ sM/})$
- $P_n = Net electric power, MW_e$
- CF = annual capacity factor, 0.85

Fusion plant COE is a useful figure of merit for self-consistent design trades and optimization. It is far less useful as a predictor of future reality due to large uncertainties in technologies and costing.

Where we left off (ORNL meeting) – COE versus rep-rate for different gain curves and laser eff.

Sensitivity studies about reference case have been completed

- Laser efficiency
- Laser cost
- Target cost
- Chamber radius
- Plant efficiency

Sensitivity of COE to laser efficiency – Increases most dramatically below ~ 5%

* If laser energy and target gain were fixed, Pnet would increase with conversion efficiency and comparison would be for different plant sizes. See back-up slides.

Sensitivity of COE to laser total capital cost – Increases linearly at ~0.25¢/kWeh per \$100/J

Sensitivity of COE to target cost – Target costs have small impact on COE

Total target cost = 16 ¢/target

Sensitivity of COE to chamber radius – Increases as weak power of Rc, like Rc^{0.1 to 0.3}

Sensitivity of COE to conversion efficiency (η_c) – Decreases as weak power of η_c , like $\eta_c^{-0.4 \text{ to } -0.5}$

Power conversion efficiency, %

What can you pay for higher efficiency? Start with basics:

Reference case power balance:

Driver energy (Ed) = 1.91 MJTarget gain (G) = 126Yield (Y) = 241 MJRep-rate (RR) = 10 HzFusion power $(P_f) = 2411 \text{ MW}$ Overall energy mult. (M) = 1.13Thermal power $(P_t) = 2725 \text{ MWt}$ Conversion efficiency $(\eta_c) = 48\%$ Gross electric $(P_g) = 1307$ MWe Driver eff $(\eta_d) = 7.5\%$ Driver power $(P_d) = 255$ MWe Aux. power = $0.04 \cdot P_g = 52$ MWe Net electric $(P_n) = 1000$ MWe Net eff. $(\eta_{net}) = P_n / P_t = 36.7\%$

$$\boldsymbol{\eta}_{net} = \boldsymbol{\eta}_c \cdot \left[1 - 0.04 - \frac{1}{\boldsymbol{\eta}_d \cdot \boldsymbol{G} \cdot \boldsymbol{M} \cdot \boldsymbol{\eta}_c} \right]$$

Net efficiency improved by higher driver efficiency, higher target gain, and/or high power conversion efficiency.

To be consistent with other results, we need to compare plants with the same net power, i.e., a more efficient plant of with the same net output, not a plant with larger output due to higher efficiency.

As conversion efficiency increases, driver energy and target gain decrease to give the same net power (1000 MWe). Rep-rate is fixed at 10Hz (still below optimum).

Power conversion efficiency is the dominant factor in determining net efficiency

Power flow diagram with direct conversion

Accounting for direct conversion

Assume:

- Ion energy = 24% of yield (Perkins) = 21% of total energy when accounting for overall energy multiplication of 1.13 (Sawan)
- All ion energy available for direct conversion by magnetic pulse compression
- Ion-to-electric conversion efficiency (η_i) examined parametrically
- Residual ion energy available for conversion at same thermal conversion efficiency (η_t) as rest of blanket power
- "Electric" power from ions considered equivalent to electric from thermal cycle
- Expression for power conversion efficiency is modified as indicated below:

Direct conversion of ion energy is one way to increase power conversion efficiency

Ignoring added costs, COE decreases by 5% with direct conversion of ion energy

Ion-to-electric efficiency

• If hold Pn and RR constant:

- COE decreases by <5% since E and G decrease to keep Pn fixed. (**red line**)

If hold E, G and RR fixed:
Pn increases with increasing ηi
Pn = 1144 MWe at ηi = 50%.

- COE \rightarrow -11% compared to 1000 MWe case without direct conversion (**blue dashed line**)

- But COE \rightarrow only -6% compared to 1144 MWe case without direct conversion (**black dotted line at** η **i=0**)

Allowed additional capital cost is with direct conversion is modest

- Additional requested sensitivity studies have been completed showing impact of cost and performance variations
 - Most effects are modest (<10-15%) over likely ranges
- Smaller chambers, as possible with magnetic diversion, are desirable; more detailed costing (including magnets, etc.) will diminish advantages
- Improving overall power conversion efficiency is more important than comparable improvements in target gain and driver efficiency
- With current targets, ion fraction of output is low, thus limiting the potential benefits of direct conversion (<5% at fixed net power, ~11% at fixed fusion power)
- Must be careful to compare apples to apples (i.e., same size plants) in evaluating the benefits of direct conversion

- Add new model for MD Chamber (geometry scaling, collector plates, new materials and costs)
- Add cost for magnets
 - Scale with magnet volume
 - Examine range of unit costs (\$/KA-m)
- Brayton cycle model not sure if cost info is available, could examine parametrically
- Improved laser models, including cost of optics –
 Open to suggestions

COE from Reactor Plant Equipment

Laser O&M not explicitly included

COE vs laser efficiency when net power is allowed to vary

COE vs power conversion efficiency when net power is allowed to vary

Power flow diagram with direct conversion: Direct electric = 0

Power flow diagram with direct conversion: Direct electric = Laser power

Many system trades need to be considered for magnetic diversion concept (repeat from 11/05)

- Costs
 - + Chamber (smaller chamber → lower cost first wall and blanket)
 - Magnets, cryo refrigeration system, magnet structural support and shielding
 - Ion dump (ion dump "first wall", cooling, shielding)
- Performance
 - + Lower first wall heat flux \rightarrow more options for FW coolant
 - + Possible higher operating temp \rightarrow higher thermal conversion efficiency, but
 - requires advanced materials \rightarrow higher costs, longer development time?
 - + Possible direct conversion of ion energy → possible higher conversion eff., but
 - requires added equipment, cost and complexity
- Nuclear Considerations
 - Small chamber → shorter FW life for given fusion power
 - Neutron leakage thru ion port → reduced TBR, shielding issues
 - Need to shield cryo magnets