Status of the Mercury Laser

Andy Bayramian

National Ignition Facility Directorate Lawrence Livermore National Laboratory Livermore, California 94550

High Average Power Laser Program Workshop Rochester, NY November 8-9, 2005

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

*utilities not included

The Mercury Laser technologies

Frequency Converter

<section-header>

Adaptive Optic

New diode technology demonstrates enhanced reliability, efficiency, and lower cost per Watt

Commercial Yb:S-FAP growth efforts are currently focused on scaling to kJ apertures

Successful growth of Mercury-scale boules will lead to kJ-scale boules in 2006

- 23 spare slabs are now in commercial production
- First 10 cm diameter growth in early CY2006
- 10 cm diameter boules can produce 10 x 15 cm single crystal apertures or bonded 20 x 30 cm apertures capable of 1 - 4 kJ

Optical quality of S-FAP has improved through reduction of grain boundaries, improved polishing, and magneto-rheological finishing

Improved polishing technique increases the laser damage threshold

Optical quality of S-FAP has improved through reduction of grain boundaries, improved polishing, and magneto-rheological finishing

Polishing (October 2005)

Far field analysis indicates that we will meet the < 5X diffraction limited goal

10

Output beam stability has been measured

Output Far Field

11

System upgrades have improved stability and reliability for high power operation

System upgrades

- Modified multiplexing and U-turn layout to reduce fluence on turning mirrors
- Improved shot and diagnostic stability through better shielding and electronics
- Automated alignment process for active correction of thermal abberations and long term drift

YCOB has generated over 220 W as an average power frequency conversion material

We have fabricated three full aperture YCOB frequency converter crystals

Aperture size is 5.5 x 8.5 x 1.1 cm³
Boules are production growth from Crystal Photonics Inc.
Czochralski growth method is scalable to kJ apertures

Multi-plate YCOB frequency converter is efficient up to a bandwidth of 384 GHz (1 ω) meeting SSD requirement

Goal : Determine the largest bandwidth and the best phase matching angle for two 7.5 mm thick YCOB crystals <u>Result</u> : Parametric studies give $\Delta v = 384$ GHz, $\theta = 700 \mu rad$

A temporally, spectrally, and spatially sculpted front end will allow efficient laser extraction and coupling to fusion targets

Energy stability and beam quality required for reliable ignition pulses

- 500 +/- 2.5 mJ @ 10 Hz
- 10,000:1 signal to noise
- Beam quality: < 1.5X diffraction limited

Temporal shaping required to compensate for gain saturation and ignition waveforms

- < 5% amplitude fluctuations
- > 250 ps jitter
- 20:1 contrast

Spectral bandwidth required for beam smoothing on target

- 3 GHz stability
- >150 GHz bandwidth
- 100:1 contrast

Front end development progress

Initial ring amplifier data show the small signal gain matching the model and successful multipass pulsed amplification

A new adaptive optic has been installed

Our adaptive optic system passed initial inspection and tests

Wavefront Sensor

Uses a four-wave lateral shearing interferometer for high resolution and simple alignment

Adaptive Optic

	Specification	Test Result	
Resolution	256x256	300x300	
Sensitivity (waves)	0.05	0.05	
Dynamic Range (waves)	0.05-150	0.05-150	
Repetition rate (Hz)	12	12	

	Spec	Test
Active aperture	45 x 75 mm	OK
Maximum Stroke (w/o defocus)	> 3 waves	ок
Flatness (w/o Defocus)	< 1 wave	0.9 waves
Transmission	< 0.2 %	0.065 %
Damage Threshold	>3 GW/cm ²	3.3 GW/cm ²

A static phase plate was used to test the adaptive optic

We are successfully meeting our performance goals

Components	Goal		Present	End FY06
Amplifier slabs (4x6 cm)	14	<	14	28
Diode tiles (120 W/bar)	288	\checkmark	360	360
Amplifiers	2	\checkmark	2	2
- Cooling uniformity (rms)	<1%	\checkmark	0.12%	0.12%
2ω Conversion crystals	2	\checkmark	3	3
3ω Conversion crystals	3		1	3
Wavefront control	DM		Commissioned	Online
Laser Performance				
Energy (J)	100		65	100
Rep-rate (Hz)	10	\checkmark	10	10
Efficiency (%)	10		6.5	10
Diode reliability (shots)	10 ⁸	\checkmark	10 ⁹	10 ⁹
Beam quality (xDL)	5		4 @ 65J (80%)	5
Pulse-shaping (ns)	3-10	\checkmark	3-15	3-15
Bandwidth (GHz @ 1ω)	>150		Offline	250 GHz
Conversion	2 \overline{0}/3\overline{0}		2ω	2 ω/ 3 ω
 √ Complet	ed		On schedule	

OII SCHEUUIE

The DPSSL approach will begin to develop multi-kJ scale components in FY06

Northrop Grumman

Schott Technologies

Summary

Project Overview

- International/National DPSSL Programs are pushing technology envelopes

System Performance

Mercury Laser performance goals are on track
 325 W average power at 14 ns for > 10³ shots (65 J at 5 Hz)
 Beam quality at 80% of energy in a 4X diffraction limited spot

Component Performance

- Pump diode arrays (Commercial prototypes meet specs)
- Crystalline gain media (23 spare slabs in queue)
- Gas cooled amplifiers (Thermal wavefront agrees with model)
- Frequency conversion (YCOB advanced material in production, scalable chilled

plate prototype demonstrated)

- Front end (90% complete)
- Adaptive optics (Mirror Commissioned)

• Next Generation Design Considerations

- System engineering with statistics in mind
- Out-of-the box thinking to push efficiencies
- Leveraging NIF engineering
- Leveraging subscale facilities for component development/chamber materials/chamber environment

Mercury Team

Collaborators

Kathy Alviso **Paul Armstrong** Earl Ault Andy Bayramian **Camille Bibeau Ray Beach** Mike Benapfl John Caird **Rob Campbell Manny Carrillo** Jay Dawson **Chris Ebbers Al Erlandson Barry Freitas Kevin Hood Bob Kent Tony Ladran Rod Lanning** Zhi Liao Joe Menapace **Bill Molander** Ed Moses **Stan Oberhelman Noel Peterson Kathleen Schaffers Chris Stolz** Steve Sutton John Tassano **Steve Telford Everett Utterback**

Coherent Directed Energy Laboratory for Laser Energetics Northrop-Grumman Onyx Optics PHASICS Night N (opt) Ltd. Crystal Photonics Quality Thin Films Schott Glass Technologies SESO Spica Zygo