Target Heating Studies and Progress Making Cryogenic Foam Targets

UR 🔌

LL

D. R. Harding, M. Bobeica, S. Scarantino, C. Hwa-Wu, R. Q. Gram, and D. H. Edgell

> University of Rochester Laboratory for Laser Energetics

> > **HAPL** Review

Lawrence Livermore National Laboratory 21 June 2005

- The equipment to measure the sticking efficient and energy transfer of high-velocity, high-energy gas to D₂ ice is assembled and is being tested
- Expanding the analysis to include a method of measuring how the roughness of the inner ice surface changes with time for different heat fluxes
- Measured the thermal conductivity of gas, liquid and solid D₂ developing a method of measuring a foam/ice composite.
- Measured the roughness of the ice layer in a foam target

Equipment construction and testing continues

- Base pressure: 10⁻⁸ torr
- Operation pressure: 0.8×10^{-6} torr with 0.8 sccm Ar flowing (with just the turbopump)
- Liquid nitrogen tank installed and operational, T < 80 K at the radiation shield
- Cryocooler operational demonstrated 11 K at the target
- Supersonic nozzle for Xe or D₂/D⁺ operational
- Electron diffraction equipment for measuring the growth rate of Xe atoms is being installed
- Method for measuring ice temperature and determining the extent of melting demonstrated
- Thermal design of cell to contain the temperature probes and confocal microscope in progress
- Confocal microscope identified—purchase order pending

UR

Goal: Deliver high-velocity, high-temperature Xe, D, and D^+ atoms to a D_2 substrate and measure the rate of temperature rise, extent of melting, rate the ice roughens

• Also, measure the rate Xe accumulates on the surface to distinguish heat from impact from heat of condensation

A high-energy, high-velocity Xe beam is achieved using a 0.5 mm nozzle and e-beam heating

- Expanding a gas from a nozzle generates a focused (15° divergent) supersonic beam of atoms.

with a chamber pressure <10⁻⁶ torr

Reversing the polarity on the voltage source will produce high velocity ions to study the effect of D_2 + and D+ on the target.

The heat and atom flux achieved with an Ar beam are both in the range that is relevant to an IFE chamber with 0.05-torr Xe

 The maximum measured temperature of 480°C suggests a gas temperature >2000°C when radiation and thermal conduction losses are included. The heat flux is 14,000 W/m².

Copper jacket around the tungsten tube

Thermocouples

The growth rate of Xe on the surface of the target is measured using the change in the electron diffraction pattern of the Xe crystal

- Need to know how much Xe is accumulating on the surface for two reasons:
 - 1. Allows the heat from Xe condensation to be determined.
 - 2. If only a small portion of the incident atoms stick, the recoiled atoms form a buffer thermalizing Xe atoms.
 - 1. Need to determine the sticking coefficient
 - 2. Need to determine the accommodation coefficient

- Xe is known to condense to form an fcc crystal with lattice spacing, $a_0 = 6.1$ Å and an atomic volume of 60 Å³.
- Extensive TEM and LEED and He-recoil scattering measurements of Xe growth at temperatures of 7 to 40 K show that the film is crystalline, so the RHEED technique should be sufficiently sensitive.

The ice temperature and degee of melting is determined from the voltage change in 15- μ m Pt wires embedded in the ice

Copper

support

Sapphire

base

- oscillations in the Pt wire temperature due to a change in the thermal conduction of the fluid contacting the wire.
- A change in the 3ω voltage is a measure of the extent of melting.

шш

N.

Gas/liquid/ice

 $\mathbf{Q} = \mathbf{8} \ \mu \mathbf{W}$

13 mm

The 3ω technique is used to measure the thermal conductivity of gas, liquid, and solid D_2

	Measured	Literature
Plastic	0.08	
D ₂ gas	0.011	0.009
D ₂ liquid	0.13	0.12
D ₂ solid	0.14 to 0.48*	0.38

Deuterium at 19 K Power = 19.3 μ W

- 1. Need to understand the effect of ice crystal size on thermal conductivity
- 2. Measurement of the thermal conductivity of a D₂-filled foam target is in progress

Sizable nonuniformities in the thickness of the foam and ice walls are observed

Foam target development

3-D characterization of the uniformity of the foam wall

- The equipment to measure the sticking efficient and energy transfer of high-velocity, high-energy gas to D₂ ice is assembled and is being tested
- Expanding the analysis to include a method of measuring how the roughness of the inner ice surface changes with time for different heat fluxes
- Measured the thermal conductivity of gas, liquid and solid D_2 —developing a method of measuring a foam/ice composite.
- Measured the roughness of the ice layer in a foam target