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There appears to be a route to a much less expensive high-
rep ignition facility

NRL Laser Fusion

* Increasing the implosion velocity from the nominal 300 km/sec to 400-
500 km/sec substantially reduces the energy needed for ignition.

* These higher velocities can be achieved by various combinations of
increased drive intensity and increased pellet aspect ratio (radius to
thickness)

» The best route for hydro-instability is increased drive intensity

* The upper bound on intensity is set by deleterious laser-plasma
instabilities whose thresholds tend to scale as 12

* The combination of a factor of 2 advantage in A2 and >THz bandwidth
gives the KrF laser an advantage

 Our calculations indicate ignition with KrF at about 140 kJ and gains >20
at 250 kJ



Low Energy KrF-driven target produces gain with high laser intensity and implosion velocity

140 KJ KrF Laser Target (1D)
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Ignition @ 140 kJ — 1/13t of NIF design energy




Energy (MJ)

3.9 x gain as well as heating by burn indicates ignition @ 140 kJ KrF
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High and low implosion velocity pellets behave differently

1.2 MJ KrF 1.5x10% W/cm?
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Parametric studies utilized conventional pulse shapes and those
with “spike” pre-pulses that can increase hydro-stability :

NRL Laser Fusion

0.25 MJ Laser Pulse ( no spike) 0.25 MJ Laser Pulse (with spike)
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Gain increases and optimum implosion velocity
decreases with laser energy

(A =248 nm, | =2.2-2.5x101> W/cm?2)
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Conventional 100:1 pulse shape
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Gain increased with addition of optimized spike!
Lots of room to trade off gain for stability if needed

(A = 248 nm, | =2.2-2. 5x1015 W/cm?2)
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New (2005) vision and plan for laser fusion energy
Smaller lower-cost Fusion Test Facility (FTF) based on new pellet designs

Basic laser fusion technology 4 )
: Target design & physics
h _ e Krypton fluoride laser J _ J .p y
Phase I eDiode-pumped solid-state laser * 2D/3D simulations
1999-2006 e Target fabrication and injection * 1-30 kJ laser-target exp.
eChamber materials and optics \_ Y,
_ 4 )
Develop full-size components Ignition physics validation
Phase I « Power-plant laser beamline » Calibrated 3D simulations
2007-2013 . Target fab/injection e LPI experiments
» Power plant & FTF design \ Y
Fusion Test Facility (FTF)
Phase ”_I ® 0.25 MJ laser-driven implosions @ 5 Hz
FTF operating * Pellet gains of ~20
~2018 ® 20-30 MW of fusion thermal power
® Develop chamber materials & components.

(Upgrade path to 0.5 MJ and ~150 MW fusion powy




Platts Nuclear Energy Conference, 17 Feb. 2005 office of Nuciear Eneray, Science and Technology G
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Fusion is not on this roadmap!
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There will be formidable competition to fusion power.

Boeing 747-200

GE WindEnerg,

ype
Turbine in Spain

»The NRL laser fusion program is fully committed to exploring and developing
the path to a lower laser energy high-rep ignition facility.

»Design studies also indicate that we may be able to significantly reduce the
minimum laser energy needed for the fusion power plants. (<1 MJ?)

»We invite and expect contributions by the other HAPL participants
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