Status of the Mercury Laser

Camille Bibeau

National Ignition Facility Directorate Lawrence Livermore National Livermore, California 94550

High Average Power Laser Program Workshop Livermore, CA June 20-21, 2005

The Mercury Laser is the first step toward building a <u>MW, 10 Hz class of IFE lasers</u>

HECDPSSL 2005 2nd International Workshop on High Energy Class Diode Pumped Solid State Lasers

The 2005 International Workshop on High Energy Class Diode Pumped Solid State Lasers (HEC-DPSSL 2005) will be held in the generation of the second state of the

This second workshop on HEC-DPSSL will cover all key aspects of high energy (~100Joules) and high repetition rate (above 0.1 Hertz) DPSSL. Three of such laser program are already under construction:

The Halna program from the Institute of Laser Engineering(ILE), Osaka University, Japan.

The Polaris program from the Institut für Optik und Quantenelektronik (IOQ), Friedrich-Schiller-Universität, Jena, Germany.

The Lucia program from the Laboratoire pour l'Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, Palaiseau, France.

Scientists from these groups will present their laser systems and share knowledge on various issues through several technical sessions:

Session 1 - Laser Programmes presentation

Session 2 - Pumping architectures

Session 3 - Extraction architectures

Session 4 – Modelling

Session 5 - Materials issues

Session 6 - Optical Damage issues

Session 7 – HEC DPSSL Command-Control (CC)

Many rep-rated solid-state lasers are being developed that complement large energy - single shot systems

The Mercury Laser amplifier technologies

These components comprise the essential building blocks of an amplifier

Frequency Converter

Bulk Modulator

Adaptive Optic

Some components are being commissioned this year for frequency conversion to 20 and improved beam quality

Commercialization of diode array technology is leading to new technological breakthroughs

Mercury Laser diode tiles and arrays have incurred up to >10⁷ integrated shots with no intrinsic failures

In-line arrays with 1.4 x 10⁷ shots total

Diode tile attributes	Goal	LLNL Tile Performance	Commercial Tile Performance
Power	100 W / bar	120 W / bar	
Reliability	2 x 10 ⁸ shots at 100 W / bar	1.4 x 10 ⁸ shots at 115 W / bar	
Power droop over 1 msec	15%	4.3%	Construction of the second secon
Linewidth	5 nm	2.3 nm	La Angela California (1977) California (1977) California (1977) California (1977) California (1977) California (1977) California (1977) California (1977)
Integrated linewidth over 1 msec	8.5 nm	4.1 nm	And And And And And And And And And
Divergence	18 x 180 mrad	15 x 140 mrad	
Efficiency	50%	45%	

- A company has just delivered the second batch of diode tiles
- Compliance testing look promising

We have transitioned nearly all the furnaces to produce full-size amplifier slabs (4x6 cm²)

Yb:S-FAP crystalline boules are being produced with the Czochralski Growth method

6.5 cm

We now produce slabs from LLNL and Northrop boules, which no longer require high temperature bonding

Poster: K. Schaffers

There are 20 slabs in fabrication to provide spares and higher quality parts

We are now focused on improving crystalline quality and growth options that allow IRE scale parts

Grain boundaries have been reduced in recent boules in full diameter section

Stress induced grain boundaries have been reduced by controlling the cooling profile of the crystal during growth

Both helium amplifiers have been characterized for beam wavefront and meet expectations

The measured wavefront of both amplifiers is close to thermal modeling in shape and magnitude

Experimental Data - includes all optics

The Mercury Laser

Gas Cooled Amplifier with Crystalline Slabs

80 kW Diode Array

rs

Mercury laser operations movie of 550 W, at 10 Hz, for several 1 hour runs

May 20th 2005

The Mercury was operated for 55J at 10 Hz for >10⁵ shots producing 0.55 kW of average power

Using advanced materials such as YCOB, we have generated over 200 W in average power output

Within 9 months of R&D, a company is producing world's largest YCOB

We have demonstrated *first* 2ω light at *10 Hz* repetition rates

YCOB 1.6 x 5.5 x 8.5 cm slab

Zhi Liao and Chris Ebbers basking in the green glow of success

Temporary Side-cooled Arrangement Frequency Converter Module

We operated system for >10⁴ shots with YCOB and produced 22.7 J at 10 Hz or 227 W of average power at 523 nm

With YCOB we have reached world records in both material apertures and high average power performance at 10 Hz rep- rates

Poster: C. Ebbers and Z. Liao

The advanced front end laser is nearly complete with installation scheduled for next year

The front end design for the Mercury laser is based on fiber amplifier technology to provide a stable and robust system

Energy stability and beam quality are required for reliability and ignition pulses

- 500 +/- 2.5 mJ @ 10 Hz
- 10,000:1 signal to noise
- Beam quality: M² < 1.5

Temporal shaping is required for gain distortion compensation and ignition pulses

- < 5% amplitude fluctuations
- > 250 ps jitter
- 20:1 contrast

Spectral Bandwidth is required for beam smoothing on target

- 3 GHz stability
- >150 GHz bandwidth
- 100:1 contrast

We have demonstrated that the fiber-based section of the front end meets energy and beam quality requirements

Poster: P. Armstrong

- MRF is being regularly used to smooth phase profiles of Yb:S-FAP slabs
- Phase plates are being used to correct low order thermal distortions
- The adaptive optic has been designed and is in procurement

Recent tests on wavefront control substrates indicate that average power specifications will be met

Specifications

Mercury Laser AWC Specfication				
	minimal			
Physical				
Active Aperture [mm]	45x75			
Surface Flatness (P-V) [um]	0.1			
Surface P-V correction [um]	4.00			
Max spatial frequency [1/cm]	0.5			
Laser				
Wavelength [nm]	1047			
Energy [J]	35			
Pulse width [ns]	3			
Avg. Power @ 10Hz [W]	300			
Peak Intensity [GW/cm ²]	2.6			
Fluence [J/cm ²]	1.04			
O a rating la				
Controls				
Resolution [points]	128 x 128			
Rep. Rate [Hz]	3			
close loop operation	yes			
sensitivity [waves]	0.05			
dyanmic range [waves]	0.01 -10			

We are successively meeting our performance goals

	Goal	Present	End FY05
Amplifier slabs	14	14 🗸	28
Diode tiles	288	307 🗸	324
Amplifiers	2	2 🗸	2
- Cooling uniformity (rms)	<1%	0.12% 🗸	0.12%
Wavefront control	DM	On order	Offline demo
Energy (J)	100	63	100
Rep-rate (Hz)	10	10 🗸	10
Efficiency (%)	10	4.5	10
Diode reliability (shots)	10 ⁸	10 ⁸ 🗸	10 ⁸
Laser reliability (hrs)	8	8	> 10
Beam quality (xDL)	5	10 @ 55J	10
Pulse-shaping (ns)	3-10	3-15 🖌	3-15
Bandwidth (GHz @ 1ω)	>150	250	Offline demo
Conversion	2 ω/3ω	2ω 🗸	2ω

✓ Completed

Summary

Project Overview

- International/National DPSSL Programs are pushing technology envelopes

System Performance

- Mercury Laser performance goals are on track

1 ω : 550 W average power at 14 ns for > 10⁵ shots (55 J at 10 Hz) 2 ω : 227 W average power at 14 ns for > 10⁴ shots (22 J at 10 Hz)

Component Performance

- Pump diode arrays (Commercial prototypes meet specs)
- Crystalline gain media (20 spare slabs in queue)
- Gas cooled amplifiers (Thermal wavefront agrees with model)
- Front end (System 80% complete)
- Adaptive optics (Commercial vendor engaged)
- Next Generation Design Considerations (R. Beach)
 - System engineering with statistics in mind
 - Out-of-the box thinking to push efficiencies
 - Leveraging NIF engineering

Mercury Team

Kathy Allen Kathy Alviso Paul Armstrong Earl Ault **Monique Banuelos** Andy Bayramian **Ray Beach Rob Campbell** Manny Carrillo **Chris Ebbers Barry Freitas** Keith Kanz John Trenholme

Rod Lanning Zhi Liao Joe Menapace **Bill Molander Noel Petersen** Greg Rogowski Kathleen Schaffers Dave Van Lue **Ralph Speck Chris Stolz** Steve Sutton John Tassano Steve Telford John Hunt Janice Lawson

Clay Widmayer Ken Manes Steve Oberhelman Mike Benapfl Kevin Hood Steve Mills **Bob Kent Tony Ladran Dolores Lambert** Peter Thelin **Everett Utterback Roger Qiu**

Collaborators

Laboratory for Laser Energetics Northrop-Grumman **Onyx Optics** Schott Glass Technologies **Quality Thin Films** Zygo **Photonic Crystals** Coherent **Directed Energy** Spica