

Response of Tungsten to High Temperature Implantation of D⁺ and He⁺

> R.F. Radel & G.L. Kulcinski HAPL Meeting-NRL March 3rd, 2005

> Fusion Technology Institute University of Wisconsin-Madison

Objective of UW Study of Tungsten Coatings

To determine the effect of helium and deuterium implantation on the surface morphology of tungsten at high temperatures

- Why: To evaluate whether tungsten will serve as a suitable material for the HAPL first wall
- **How:** Use IEC device to irradiate materials with He⁺ and D⁺ ions. Then use Scanning Electron Microscopy and Elastic Recoil Detection to determine morphology and retention rates of He and D.

UW IEC Chamber has Capability of High-

D⁺, 20 kV, 5 mA 2 mtorr, 1100 °C

Assess Ability of W Coatings to Operate In a HAPL Environment He+, D+, 800-1,200 C

High Temperature He⁺ Implantation Resulted in Porous Surface Structure in Large Grain W-coated TaC

As Received – Large Grain W

Irradiated at 800 °C

Large Grain W-coated TaC Sample Irradiated at 800 °C with a 6x10¹⁷ He⁺/cm² Fluence Ref. HAPL Chamber Operation for ~8 hours

Assess Ability of W Coatings to Operate In a HAPL Environment He+, D+, 800-1,200 C

Progress Since the Last Meeting

- He⁺ Fluence scans were performed on polycrystalline tungsten at 800 °C
- He⁺ Fluence scans were performed on single crystal tungsten at 800 °C
- Simultaneous He⁺ and D⁺ Fluence scans were performed on polycrystalline tungsten at 800 °C
- Elastic Recoil Detections was used to examine the retention rates and depth profiles of He⁺ and D⁺ in tungsten samples

Two Types of Tungsten Samples Were, Used for Irradiation Experiments

- Powder metallurgy or single crystal samples
- Obtained from Lance Snead, Oak Ridge
- Polished finish
- Spot-welded onto a W-Re wire loop

Experimental Conditions*

*All experiments were performed at 30 kV, 0.5 mTorr, 2<u>+</u>1x10¹⁶ #/cm²s * Secondary Emission Coefficient of 2 was assumed for these experiments⁹

Threshold for He Pore Formation at 30 kV in Single Crystal Tungsten is Higher than Polycrystalline

Polycrystalline, 850 °C

Single Crystal, 815 °C

9.4 x 10⁸ pores/cm² <5 x 10⁷ pores/cm² Tungsten Samples at 1x10¹⁸ He⁺/cm²

Single Crystal Tungsten Shows Reduced Pore Density (≈3X) at Higher Fluences

5.8x10⁹ pores/cm²

 $2.3 \times 10^9 \text{ pores/cm}^2$

Tungsten Samples at 3x10¹⁸ He⁺/cm²

At Low Fluences, Simultaneous D⁺ and He⁺ Reduced Pore Density by a Factor of Four

Helium Only, 850 °C

Helium + Deuterium, 880 °C

9.4x10⁸ pores/cm² Polycrystalline Tungsten Samples at 1x10¹⁸ He⁺/cm²

Simultaneous D⁺ and He⁺ Has Little Effect on Pore Density in Polycrystalline W at Higher Fluences

5.9 x 10⁹ pores/cm² Tungsten Samples at 1x10¹⁹ He⁺/cm²

Elastic Recoil Detection (ERD) Analysis Was Used to Evaluate Helium Concentrations

• UW-Madison Tandem Particle Accelerator

• 8 MeV (4⁺) Oxygen Beam

Initial Helium Retention Profile Qualitatively Fits TRIM Calculations

ERD Analysis Indicates That There May Be a Substantial Amount of D He Recycle[®]

Retention Ratio vs. Helium Fluence

ERD Analysis Indicates Saturated Amount of Helium Retention

Helium Retention vs. Fluence

Conclusions

- Threshold for He pore formation in single crystal tungsten is higher than polycrystalline material.
- Single crystal tungsten shows reduced surface pore density at higher fluences $(10^{18} 10^{19} \,\#/\text{cm}^2)$.
- Simultaneous D⁺ and He⁺ bombardment on polycrystalline tungsten reduced pore density by a factor of four at low fluences.
- At higher fluences, simultaneous D⁺ and He⁺ irradiation produced the same surface pore density as He⁺ irradiation.
- Initial 30 keV helium retention profiles qualitatively fit TRIM calculations
- Elastic Recoil Detection analysis indicates saturated helium retention in polycrystalline tungsten

Future Work

- Examine effects of alloying tungsten samples with 25% rhenium in the 700 – 1200 °C range
- Evaluate deuterium retention rates and profiles using ERD analysis
- Determine helium retention rates and profiles in single crystal tungsten samples using ERD analysis

IEC Device Provides Uniform Ion Fluence

World Record Steady State D³He Fusion Reaction Rates Achieved in Wisconsin IEC Devices

