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Fabrication and Characterization
Tungsten Armored Low Activation Ferritic Steel

Objective: Evaluate methods for bonding 
tungsten to F82H Steel and assess the 
integrity of these coatings under IFE 
relevant thermal fatigue conditions.

Approach: Focus on achieving mechanical 
and thermal similitude at the W-Steel 
interface.
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Tungsten Clad LAF
Potential Damage - Failure Modes

a. Spallation – Stain mismatch
b. LCF – Excursions to Ambient
c. DBTT in Tungsten – Impurity Issue
d. HCF Failure – through thickness and interface 

cracking
e. Thermochemical and irradiation stability of F82H 

at W-LAF interface.
f. He evolution and spallation
g. Thermomechanical performance of LAF

Creep and Creep-Fatigue
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Tungsten Cladding of F82H Steel
Fabrication method defines the initial state of the interface.

• PVD

• CVD

• Plasma Spraying

• Engineered Structures
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Interfacial stress in plasma sprayed coatings and 
substrates can be measured by neutron diffraction.

Steel Ni-5%AL

Residual stress meas. by neutron diffraction: ORNL, NIST….
Residual stress meas. by XRD limited to few µm penetration.
Residual stress meas. by mechanical techniques is possible.
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Ductile-brittle transition behavior of tungsten is 
sensitive to impurity levels and processing.

F82H = 0.5 atomic %C …..Target Debris

W powder:<25ppm C & <500ppm O
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IR Thermal Fatigue Facility is an enabling 
technology for coating durability studies.
Coupon and subscale component testing are 
possible.
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The IR thermal fatigue test has been
re-configured to ensure 1-D heat transfer 

through the W-clad steel specimen
• First TC, at the specimen 

mid-plane, is 2.5 mm below 
the W/F82H interface.

• Far-field temperatures are 
measured by imbedded TC 
array to give a precise 
measure of net heat flux.

• TC data is recorded.
• Coolant flow through chill 

block is controlled.
• Tungsten surface temp. 

can be confirmed by high 
rate IR camera if 
necessary.
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A Finite Element Model was developed to simulate thermal 
gradients in  the IR fatigue test for W-clad F82H steel specimens 

measuring  25mm x 25mm x 5 mm.
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Model allows the determination of IR lamp 
parameters to achieve warm start-up and target 

interface temp. under steady state pulse conditions.
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• Constant heat flux was maintained 
until a steady state temperature 
was attained.

• Target interface temperatures were 
attained for 7MW/m2, as indicated 
by Blanchard and Martin (2004).
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Temperature profiles for 100 and 250 µm-
thick tungsten coating were calculated.
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Variation of IR pulse conditions and coating thickness allow for
refinement of the model.  The numerical simulation can be calibrated

and validated against the TC temperature measurements.
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In preliminary thermal fatigue experiments, 
over-temperature exposure of the W-steel 
interface demonstrated the potential for 

chemical instability.

W

Fe7W6

F82H Steel

W

F82H Steel

Test conditions: Preheat to 600ºC + 1000 cycles of IR Pulse.

• XRD of intentionally spalled coating confirmed the 
compound at the interface to be Fe7W6 and Fe3W3C.

• The presence of this phase in grain boundaries further 
illustrates the role of solid state diffusion.
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XRD provides an efficient and accurate 
approach to interface phase identification.
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Fe-W binary phase diagram indicates the 
presence of several intermetallic phases.

●●●
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Nanohardness trace illustrates the brittle 
nature of the interface phase.  The mechanical 
integrity of the interface will be compromised.
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Electron microprobe was used to 
quantify concentration profiles 
across the W-F82H interface.
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Thermodynamic data bases can be used 
to predict phase equilibrium in multi-
component systems.  (JMatPro)
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Numerous intermetallic and carbide 
phases form in F82H Steel during long 
term aging at elevated temperatures.
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Isothermal aging experiments are underway to 
systematically characterize the thermochemical

stability of tungsten/LAF coating system.

Invar Screws

F82H

Tungsten Foil

F82H

Diffusion Couple

Evacuated and Sealed Quartz Tube

Assembled
Diffusion Couple

Plasma Sprayed
Specimen

• Tungsten/LAF diffusion couples are being aged at
500C to 900C for times ranging from 100h to 10,000h.

• Post aging analysis of samples will includes:
- Microchemistry profiles in the steel, interface and coating
- Phase identification by XRD
- Phase equilibrium analysis

• Solid state diffusion model will be developed to extrapolate results to 
longer times
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Assembled diffusion couples allow for the  
assessment of alternative material 

combinations including diffusion barriers.

• Re has been used as a 
diffusion  barrier  between  
Carbon-Carbon Composites 
and W for MFE applications.

• Pt will be evaluated since it 
forms alloys with both W and 
Fe.
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The durability assessment of W-clad LAF steel 
must address HCF, LCF, DBTT of W and long 
term thermochemical stability of the interface.



22

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Current Status

• Vacuum plasma sprayed W on F82H Steel is the principal material 
candidate.  A number of material conditions are ready for testing.  
Additional material conditions exploring  W/F82H material options are 
being produced, e.g., thick tungsten coatings and platinum diffusion 
barriers.

•  The thermal fatigue test has been reconfigured, instrumented and 
modeled to define and control the tungsten/steel interface condition.  
Experiments are scheduled to begin the second week of March.
Shorter pulse width, ~ 2msec will be available by late summer.

•  Long-term stability of the interface is required.  Isothermal aging 
experiments are underway to assess the stability of the interface for 
times beyond what is practical for the thermal fatigue test facility.
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