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Definition of the problem addressed, reasons

to approach it, and modalities of investigation
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e Goal:
Quantify the response of a target to the thermal environment of the
fusion reaction chamber (hot gases, radiation heat loads).

Acquire and apply experimental data into a thermal model to describe
heat flow through the target.

e Experimental method:

Produce the environmental conditions and processes undergone by the
target in the fusion chamber and measure sticking and accommodation
coefficients of Xe (v, T, p) on an 18 K D, target.

e Monte Carlo calculations will guide experimental design.
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Experiment Concept and Design
Environmental conditions relevant for target injection
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* Range of conditions that can be studied relative to target injection:

— D, target at ~14 to 18.7 K

... . 200 m/s Point design 800 m/s
— Target injection velocity | . * . |
| 1 | 1 |
A A A

(as determined from Monte Carlo)

— Vacuum (UHV)

— Maximum incident energy flux at target
- 330,000 W/m?2 for 1023 atom/m3 (p = 3.1 torr at 300 K)
- 25,000 W/m2 for 1022 atom/m3 (p = 0.31 torr at 300 K)
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Experiment Concept and Design

Simulated conditions inside the fusion chamber
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Response of a target to the heat flux (from previous Monte Carlo calculations)

o = 1.7 x 1021 atm/m3
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e Xe gas at 4000 K

e 6-mm target injected at 100 or 400 m/s

e 6-m radius chamber

Heat transferred to target

during transit (4000 K, 400 m/s)
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B High density (0.7 torr):
all energy transferred in
collision; no condensation

@ Low velocity (100 m/s):
all energy lost in collision,
no condensation

B Worst case: all enegy
lost in collision and
all atoms stick

< All energy lost in collision,
no condensation

A Half impact energy

transferred, no
condensation

@ Low density (10 mTorr):
all energy lost in collision,
no condensation

Y¢ Reference: OMEGA target

Heat load is a strong function of accommodation and sticking coefficients
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Experiment Concept and Design

Equipment
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Surrogate D, target (2 mm diam)

— to be attached to a “cold finger” in thermal contact with the second
stage of a cryostat

40 W cryostat at 20 K
— low vibration device

Thermal gas cracker + supersonic nozzle + thermal radiation shield
— provide Xe atoms flux (velocity 400 m/s)

— Xe atom beam heated at 3000 K by electron bombardment,
in a tungsten capillary

— protect the target against thermal radiation

Compound molecular pump
— volume flow rate—2400 L/s
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Experiment Concept and Design
General description of the experimental setup
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Schematic with components Detail for target—schematic
——— Top view
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1) Cryostat

Vacuum chamber with liquid N» tank
Molecular pump

Thermal gas cracker

Thermal radiation shield

Target

Instrumentation

RHEED gun
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Nozzle design—to provide the required gas velocity and temperature

Radiation shield design—attached to the thermal gas cracker—

minimize radiation load to the target assembly .
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Comparison (from Monte Carlo)

Simple nozzle Complex nozzle
3000 K Simple nozzle Complex nozzle

Temperature 600 K 1000 K
Vacuum / at target
7 Velocity 2200 m/s 1500 m/s
|/

Radiation shield (schematic)

-Tungsten
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Experimental optimization of:

1. gas flow
2. shield configuration

Gascracker with radiation shield
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What do we want to measure and how?
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 Measure Xe condensation on target surface (sticking coefficient
for different dm/dt, v, T)

— Sticking coefficient = the absorbed atomic flux/incident flux supplied by source
Method employed: reflection high energy electron diffraction (RHEED)

— Measure the rate of Xe film growth — the heat of condensation
and size of the cold bow wave in front of the target

 Measure the total heat flux (accommodation coefficient)

— Accommodation coefficient = the fraction of heat transferred between the surface
and the molecule (Egfiected’Eincident)

Method employed: 3w method—thermal conduction/volumetric phase ratio
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RHEED method:
Reflection High Energy Electron Diffraction
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Schematic of RHEED RHEED pattern
Phosphorescent
screen
|
|
e (5 to 100 keV) |
| —
Sample

* A high-energy beam from an electron gun (~20 keV) is directed
at the target surface at a very small angle.

* A phosphor screen shows a diffraction pattern (corresponding
to a particular roughness of the surface).

— Flat/smooth surface — sharp RHEED pattern
— Rough surface — diffuse RHEED pattern

* Monitor the atomic layer-by-atomic layer growth of Xe film—
possible due to oscillations in the intensity of the diffracted beam.
-0 The advantage of setup geometry: good access to the sample



3w method: thermal conductivity estimation at cryogenic temperatures
Voltage in the sensor depends upon the thermal conductivity of the

surrounding fluid—which depends upon the extent of melting
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// e 2 Pt wires (15-um diam) = a sensor which
detects the fraction of ice/liquid contacting it.

.............................

e Heat flux is calculated by measuring the

Xe rate the ice melts for a known Xe mass
: " flux to the surface
& Opt * An ac current lgsinot applied to the Pt wires —

2n temperature and resistance oscillations —

Deuterium at 19 K Power = 19.3 uW 3 voltage fluctuation (V3(n)

()

5 101 | | |

=

S 0L Low plessure gas | e V3, can be measured — AT = const (V3,/V1,)
53 o (phase-sensitive detection)*

Ec 401 LB B m g Saturated vapors

29 Q .. . : .
b~ o * Thermal conductivity estimation by comparing
§-,=3 1072 -¢ ¢ o ® o 0 AT measured = F(frequency) with heat transport
28 103 Liquid ™ 8 | calculations — ke

S o, ., 3 Kvol = Kiig Miig + Kice Mice — ice/liquid fraction
< 10-1 100 101 102 103 — heat flux

Frequency of applied current (Hz)
T2005 (“Solid curve” in progress) *D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).




Modified nozzle design: Monte Carlo results
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Modified nozzle design: Monte Carlo results
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e Temperature at
target: 1000 K

e Temperature
before the first
radiation shield:
2400 K



Thermal radiation shield design: Monte Carlo calculation
Future experimental directions: Optimize the temperature and

velocity of Xe and optimize the thermal radiation shielding of the target
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0.008 || Velocity at target: 200/ms
Thermal radiation ' i | Temperature at target: 400-600 K

Higher temperatures and velocities
at target possible for a smaller number
of shields and at different densities of Xe
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0
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