# **Progress Report on SPARTAN Simulation** of IFE Chamber Dynamics

### Farrokh Najmabadi and Zoran Dragojlovic

HAPL Meeting

March 3-4, 2005 Naval Research Laboratory Washington DC

Electronic copy: http://aries.ucsd.edu/najmabadi/TALKS UCSD IFE Web Site: http://aries.ucsd.edu/IFE

# **Thermo-Mechanical Response of Chamber Wall Can Be Explored in Simulation Facilities**

### **SPARTAN features:**

- Physics: Navier-Stokes equations with state dependent transport properties; Coronal model for radiation.
- ➢ Numerics: Godunov solver; Embedded boundary; and Adaptive Mesh Refinement
- Two-Dimensional: Cartesian and cylindrical symmetry
- ➤ Use results from rad-hydro codes (BUCKY) as initial condition.





 All previous results were based on a Bucky run provided by Don Haines

# A variety of chamber geometries has been considered



# Without Radiation, a high temperature zone would be developed in the chamber



# Without Radiation, a high temperature zone would be developed in the chamber

**Case I: No Radiation** 



# **Dynamic Evolution of Xe-filled Chambers**

### A large number of cases with different geometries were simulated:

- 3-D effects can be observed and sufficiently described by using a combination of Cartesian and axisymmetric cylindrical 2-D models.
- Shape of the chamber makes little difference in peaks and averages of the temperature (< 10%).</p>
- ▶ Peak Xe temperature is set by radiation at about 5,000K.
- ➤ A Journal article was written but is currently shelved. (see below)

# **Status of Plans from Previous HAPL Meeting**

Separate radiation step from the fluid dynamics in order to shorten the run time with the full radiation source term.

- ✓ Done! (only a factor of ~2 reduction in run time).
- ✓ We purchased a two-processor 64-bit (native) computer with fast memory access: Drastic reduction in run time.
- ✓ Developed MATLAB based GUI for post-processing of the data.
- ✓ Developed a program to construct the problem geometry from simple geometrical shape.

Parametric study of different gases (Xe, He, D, T) and initial pressures in the chamber:

- ✓ We received Bucky runs for chambers filled with D, T, and Xe at 10, 30, and 50 mTorr.
- ✓ There are significant differences between new Bucky runs and one received from Don Haines.

# Differences between Old and New Bucky Runs (50 mTorr Xe)



# **Differences between Old and New Bucky Runs (50 mTorr Xe)**

### Temperature



#### Data from Don Haynes, 2001

### Data from Greg Moses, 2004



# **Comparison of SPARTAN runs using Old and New Bucky Runs as initial conditions**

### Data from Don Haynes, 2001



$$T_{max} = 4,690 \text{ K}$$
  
 $T_{min} = T_{wall} = 973 \text{ K}$   
 $T_{ave} = 3,510 \text{ K}$ 

$$T_{max} = 5,370 \text{ K}$$
  
 $T_{min} = T_{wall} = 973 \text{ K}$   
 $T_{ave} = 3,640 \text{ K}$ 

Data from Greg Moses, 2004



 $\begin{array}{l} \rho_{max} = 2.9 \ g/m^3 \\ \rho_{min} = 0.5 \ g/m^3 \\ \rho_{ave} = 0.7 \ g/m^3 \end{array}$ 

# **30m Torr D Initial Condition from Bucky**



### **Final Words...**

Parametric study of different gases (Xe, He, D, T) and initial pressures in the chamber:

 $\checkmark$  Whenever Bucky initial conditions becomes available.

### **Regime of validity of SPARTAN:**

- ✓  $Ku = \lambda/L < 0.01$  Valid
- $\checkmark$  Ku ~ 1 Molecular flow, not valid
- ✓ 0.01 < Ku < ~ 0.2 Transition (transport coefficients should be modified) but in IFE chambers transport is dominated by radiation