## Armor Simulation Experiments At Dragonfire Facility

## Farrokh Najmabadi and John Pulsifer

HAPL Meeting

March 3-4, 2005 Naval Research Laboratory Washington DC



Electronic copy: http://aries.ucsd.edu/najmabadi/TALKS UCSD IFE Web Site: http://aries.ucsd.edu/IFE

## **Armor Irradiation Test Matrix**

| > Test matrix: | Initial Temp. | $\Delta \mathbf{T}$ | No. of Shots              |
|----------------|---------------|---------------------|---------------------------|
| Sample 1A:     | RT            | 2,000°C             | $10^3 (100s)$             |
| Sample 2A:     | RT            | 2,000°C             | $10^4$ (~16 mins)         |
| Sample 1B:     | RT            | 2,000°C             | 10 <sup>5</sup> (~2.8 hr) |
| Sample 3A:     | RT            | 2,500°C             | 10 <sup>3</sup>           |
| Sample 2B:     | RT            | 2,500°C             | $10^{4}$                  |
| Sample 3B:     | RT            | 2,500°C             | 10 <sup>5</sup>           |
| Sample 4A:     | 500°C         | 2,000°C             | 10 <sup>3</sup>           |
| Sample 5A:     | 500°C         | 2,000°C             | 104                       |
| Sample 4B:     | 500°C         | 2,000°C             | 10 <sup>5</sup>           |
| Sample 6A:     | 500°C         | 2,500°C             | 10 <sup>3</sup>           |
| Sample 5B:     | 500°C         | 2,500°C             | $10^{4}$                  |
| Sample 6B:     | 500°C         | 2,500°C             | $10^{5}$                  |

Samples: Powder metallurgy tungsten samples from Lance Snead.

## **Our laser was repaired and tuned in December**



We now continuously monitor temporal profile and spatial profile of the laser.

#### Thermometer head and Scope.



### **Experimental Setup**



## A Variety of Measure has reduced the noise in thermometer signal considerably



# Sample tests were performed at a fixed laser energy (no feedback to fix $\Delta T$ )

#### **Evolution of sample** $\Delta T$ **:**

- ✓ During the first 10-100 shots, reflectivity of sample surface changes and there is a change in sample  $\Delta T$ . Afterwards,  $\Delta T$  remains creatively constant.
- ✓ For large shot rates, spatial profile of laser over the target varies (very slowly) leading to changes in  $\Delta T$  (< 10%).

#### Sample equilibrium temperature

- $\checkmark$  Sample is cooled through conduction to the vacuum vessel.
- ✓ For heated samples, conduction cooling is large, power to the heating element is typically 10 times larger than laser energy. Sample temperature is easily maintained at the desired temperature.
- ✓ For RT samples, conduction cooling is negligible. For large shot rate, sample test temperature increases (from 28 to 132°C for 10<sup>5</sup> shots).

## **Armor Irradiation Test Matrix**

| > Test matrix: | Initial Temp. | $\Delta \mathbf{T}$ | No. of Shots              |
|----------------|---------------|---------------------|---------------------------|
| Sample 1A:     | RT            | 2,000°C             | $10^{3}(100s)$            |
| Sample 2A:     | RT            | 2,000°C             | $10^4$ (~16 mins)         |
| Sample 1B:     | RT            | ~ 2,000°C           | 10 <sup>5</sup> (~2.8 hr) |
| Sample 3A:     | RT            | ~ 2,500°C           | 10 <sup>3</sup>           |
| Sample 2B:     | RT            | 2,500°C             | $10^{4}$                  |
| Sample 3B:     | ~ RT          | 2,500°C             | 10 <sup>5</sup>           |
| Sample 4A:     | 500°C         | 2,000°C             | 10 <sup>3</sup>           |
| Sample 5A:     | 500°C         | 2,000°C             | $10^{4}$                  |
| Sample 4B:     | 500°C         | 2,000°C             | 10 <sup>5</sup>           |
| Sample 6A:     | 500°C         | 2,500°C             | 10 <sup>3</sup>           |
| Sample 5B:     | 500°C         | 2,500°C             | 104                       |
| Sample 6B:     | 500°C         | 2,500°C             | 10 <sup>5</sup>           |

Samples: Powder metallurgy tungsten samples from Lance Snead.

## **Powder Metallurgy Tungsten Samples After** Laser Irradiation



- Samples are polished to a "mirror-like" finish.
- The "damaged" area has a "dull" finish.
- A brown background is placed in the photograph to enhance contrast.



- Optical microscope at low resolution
- "Black" areas appear black because of the "dull finish" (they appear as whitish to the naked eye)

## **Effects of Shot Rate and Temperature Rise**

#### 370mJ (~2000°C ΔT), RT



#### 530mJ (~2500°C ΔT), RT



## **Effects of Shot Rate and Temperature Rise**

#### 370mJ (~2000°C ΔT), 500°C

**High Magnification** 



#### 530mJ (~2500°C ΔT), 500°C





#### 10<sup>5</sup> shots

## **Effects of Shot Rate and Base Temperature**

#### 370mJ (~2000°C ΔT), RT



#### 370mJ (~2000°C ΔT), 500°C

High Magnification



#### 10<sup>3</sup> shots

#### 10<sup>5</sup> shots

## **Effects of Shot Rate and Temperature Rise**

#### 530mJ (~2500°C ΔT), RT

![](_page_11_Picture_2.jpeg)

#### 530mJ (~2500°C ΔT), 500°C

![](_page_11_Picture_4.jpeg)

![](_page_11_Picture_5.jpeg)

#### 10<sup>5</sup> shots

## **Interesting Features**

#### 370mJ (~2000°C $\Delta$ T), RT, 1000 shots

![](_page_12_Picture_2.jpeg)

#### 550mJ (~2500°C ΔT), RT , 1000 shots

![](_page_12_Picture_4.jpeg)

Slip planes?

![](_page_12_Picture_6.jpeg)

**Impurities**?

## **Material Response: At First Glance**

> It appears that samples evolves at two different time scales:

- ✓ Low shot count: Defect planes appear,
- ✓ High shot count: Individual "nuggets" form (are we seeing the powder constituents breaking apart?)
- Higher equilibrium temperature leads to less damage
  - ✓ Highly visible in low shot counts, For example, 1,000 shots at ∆T ~ 2,500°C with 500°C sample is "almost" damage free while the corresponding RT sample shows damage.
  - ✓ At high shot count, samples with higher equilibrium temperature also show "slightly" less damage.

## **Towards 10<sup>6</sup> shots on Dragonfire**

- > It would be difficult to take  $10^6$  shots continuously:
  - ✓  $10^6$  shots would take about 28 hours.
- > Can we beak  $10^6$  shots into three days of ~9 hour shooting?
- As a test, we have shot a sample at 10<sup>5</sup> shots in two series: (half of the shots in the morning and half in the afternoon)
  - ✓ Sample ∆T was different in afternoon series compared to morning series (by 15%).
  - ✓ Not clear if this was due to changes in laser profile or material response.
- We plan to repeat this experiment and compare with a sample shot continuously for 10<sup>5</sup> shots.