
IFE CHAMBER VACUUM SYSTEM

HAPL - MARCH 2005 - NRL - WASHINGTON D.C.

J. Sethian, C. Gentile, R. Parsells, S. Langish, L. Ciebiera, W. Blanchard, R. Yager, F. Dahlgren, C. Priniski

* Please see "IFE Chamber Vacuum System" Poster

Requirements

Requirement	Action
 Design pumping system to meet requirements of IFE target chamber in accordance with system specifications 	 Proposed conceptual design employing conventional components indicate that system requirements can be achieved
 Provide a cost-effective/ economical system to meet requirements 	 Employ pumps for multiple purposes (i.e. Kinney pumps also configured to rough down target chamber and beam ports) Employ commercial off the shelf components with good
	operational history for system
 Provide a system for "eventual" D-T operations 	 Proposed system will support tritium operations
 Design pumping system to operate in 1 k gauss magnetic field 	 Employ shielding around target chamber TMP's to provide a 50 gauss field which the TMP's will operate in
 Manage debris in target chamber from target remnants 	 Screens incorporated into the inlet of target chamber TMP's
 Establish an accurate cost estimate for system components 	 Vendor contacts established for component specifications and cost
 Design a reliable IFE target chamber pumping system 	 Proposed conceptual design employs similar components successfully used on a large MFE (TFTR) vacuum vessel

Ref. Doc.: J. Sethian "Vacuum System for a Laser IFE Chamber", January 23, 2005.

Conceptual Design

- Cryo pumping reviewed, but determined to be too costly.
- System employs commercial off the shelf (COTS) components to minimize costs.
- System employs high efficiency turbo molecular pumps backed by roughing pumps.
- System employs components which have good operational history in similar type environments.
- Cost estimate from vendors, online quotes, and telephone conversations with sales representatives.
- System designed to transition to tritium use with minimal modifications.

System Specifications

Target Chamber

Inner radius = 6.5 m Outer radius = 7.3 m Target chamber volume = 1,150,346 liters Toroidal duct volume = 145,141 liters Total volume (without beam ports) = 1,295,487 liters First wall material = SiC

Target Chamber Pressures

Operational base pressure = 0.5 mtorrGas load = 141 torr-liters/sec Total system in-leakage = 1×10^{-5} torr-liters/sec

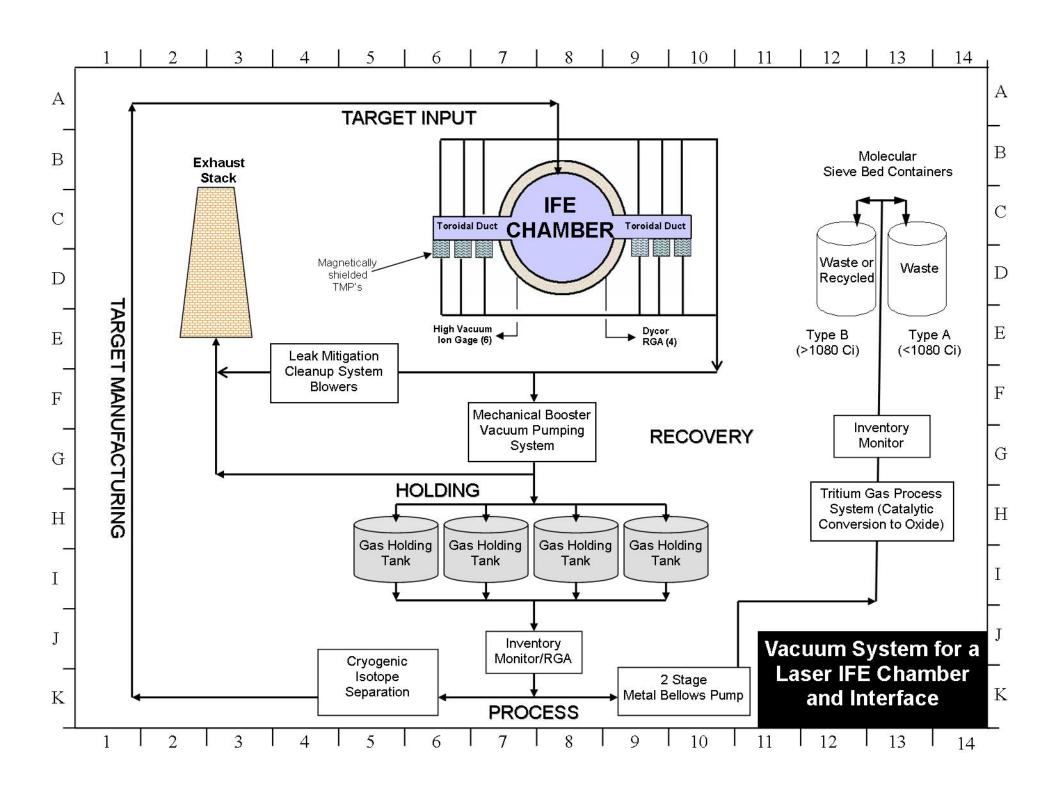
Vacuum Pumping System – Target Chamber

TMP pumping ducts = 60 TMP's (Varian-V 6000) = 2/duct TMPS's total =120 TMP backing pumps (Kinney KMBD-2000) = 1/6 TMP's Backing pumps total = 20

Vacuum Pumping System – Beam Ports

TMP's (Varian-V 2000 HT) = 1/beam port TMPS's total =60

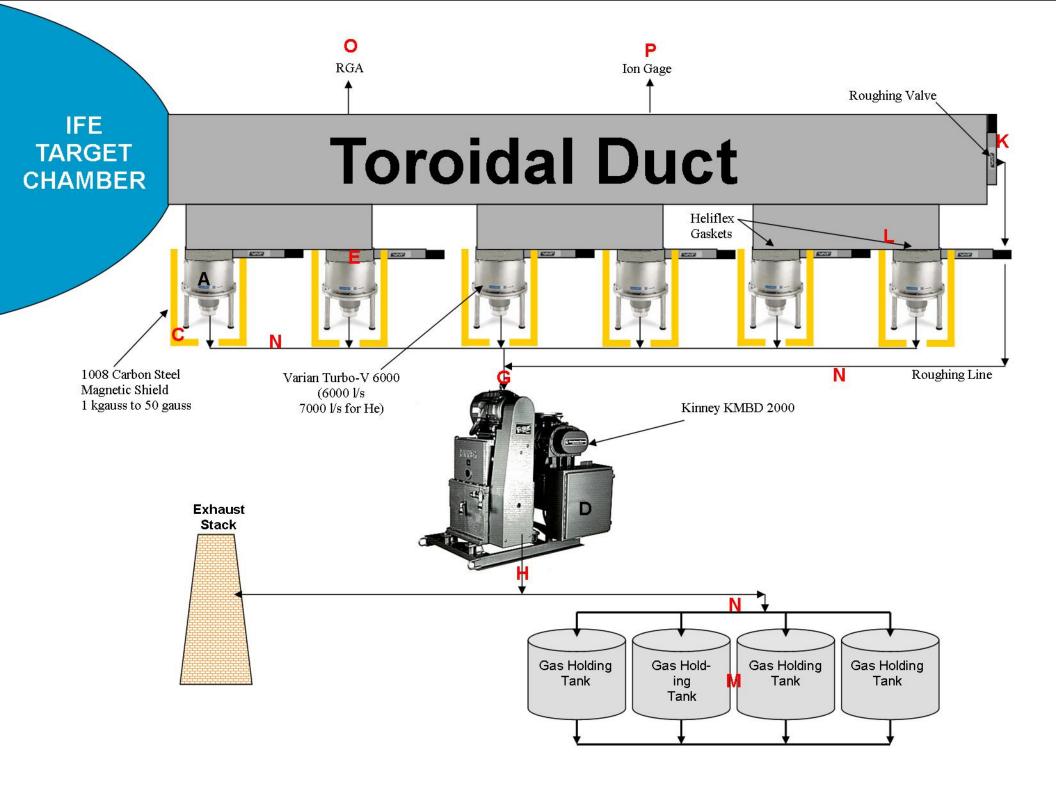
Target Chamber TMP Magnetic Shielding

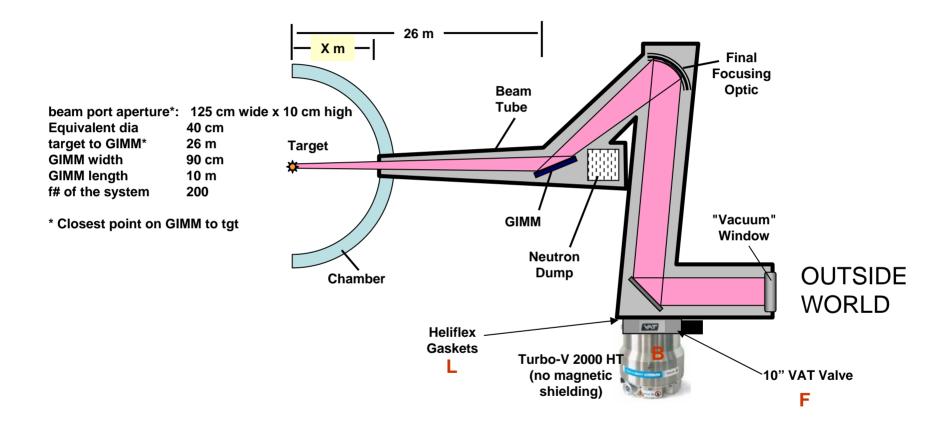

Magnetic shields = 1/target chamber TMP Magnetic shields total = 120 Shield design for external 1 kgauss field TMP shielded to less than 50 gauss

TMP Heat Loading

Gas load T 1000K - 4000K = no operational effects on TMP's

System Pumpdown


From 760 torr to 0.5 mtorr (initial conditions) = < 8 hrs


IFE Vacuum System Components

Key Equipment Name

- A Varian Turbo-V 6000 (on target chamber)
- **B** Varian Turbo-V 2000 HT (on each beam tube)
- **c** Magnetic Shielding (only on Turbo-V 6000)
- D Kinney KMBD -2000 Backing Pumps
- **E** TMP/Target Chamber Isolation Valves (VAT valves, 20" throughput)
- F Beam Tube (TMP) Isolation Valves (VAT valves, 10" throughput)
- **G** Roughing Valves (between TMP exhaust/Kinney Inlet)
- H Gate Valves (after Kinney discharge)
- I Dycor RGA (0-200 AMU w/ pumping system)
- J Instrumentation and Control
- **K** Target Chamber Isolation Valves (for roughing pump interface-VAT valves, 8" throughput)
- L Heli-Flex Seals
- M Gas Holding Tanks (10 m³)
- N Interfacing Piping
- Residual Gas Analyzer
- P High Vacuum Ion Gage

Beam Port

Prepared by: Bob Parsells

Scope

This analysis evaluates the pressure as a function of time in the 6.5 meter radius IFE chamber References

1. John Sethian, "Vacuum System for a Laser IFE Chamber", Jan 23, 2005.

2. A. Roth, "Vacuum Technology", North -Holand, 1996.

Assumptions

1. IFE spherical chamber 6.5 meters radius.

2. IFE mid-plane toroidal duct 10 meter radius, 80 cm high

Pumping speed

 $P_0 := 1 \cdot atm$

 $P_0 = 760 \text{ torr}$

 $S_{TMP} := 6000 \cdot \frac{\text{liter}}{\text{sec}}$

$$S_{eff_TMP} := \frac{1}{2} \cdot S_{TMP}$$

 $r_{sphere} := 6.5 \cdot m$

$$V_{\text{sphere}} := \frac{4}{3} \cdot \pi \cdot r_{\text{sphere}}^3$$

 $S_{eff_TMP_sys} := 120 \cdot S_{eff_TMP}$

 $V_{sphere} = 1.15 \times 10^3 \text{ m}^3$

 $V_{duct} := 145141 \cdot liter$

 $S_{eff_TMP_sys} = 3.6 \times 10^5 \frac{liter}{sec}$

$$V := V_{sphere} + V_{duct}$$

Half the system to rough and half the system to back TMPs Half the system is 10 pumps

$$S_{booster} := 2000 \cdot \frac{ft^{3}}{min}$$

$$S_{eff_booster} := \frac{1}{2} \cdot S_{booster}$$

$$S_{eff_booster} = 471.947 \frac{liter}{sec}$$

$$S_{booster_sys} := 10 \cdot S_{eff_booster}$$

$$S_{booster_sys} = 4.719 \times 10^{3} \frac{liter}{sec}$$

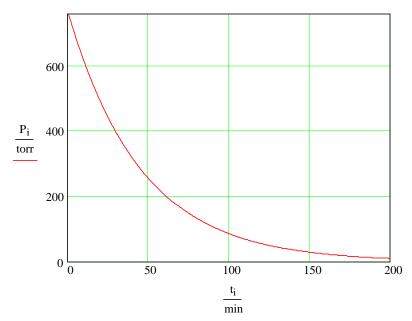
$$S_{mech_pmp_sys} := \frac{1}{10} \cdot S_{booster_sys}$$

PHASE I

Pump down time to turn on booster pump, from Atmosphere to 10 Torr

$$T_{one} := \frac{V}{S_{mech_pmp_sys}} \cdot ln\left(\frac{760 \cdot torr}{10 \cdot torr}\right)$$
$$T_{one} = 198.1 \text{ min}$$
$$P_{o} := 760 \cdot torr$$
$$N := 600$$

$$i := 0.. N$$

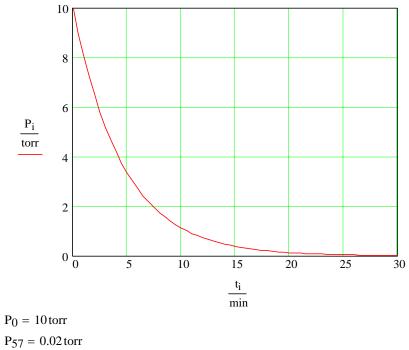

$$t_i := i \cdot \frac{300}{N} \cdot \min$$

$$t_{150} = 75 \min$$

$$t_0 = 0 s$$

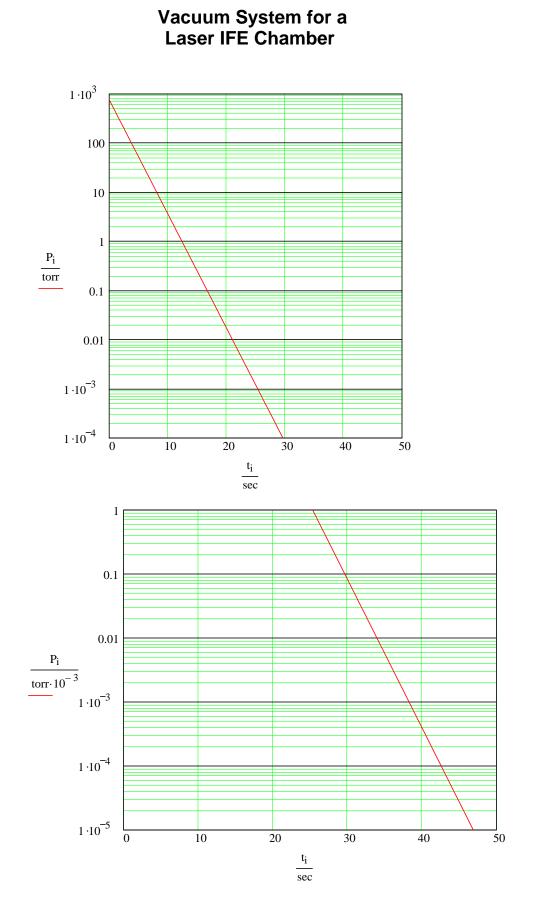
$$\frac{-S_{mech_pmp_sys}}{V} \cdot t_i$$

 $P_i \coloneqq P_0 {\cdot} e$



$$P_0 = 760 \text{ torr}$$

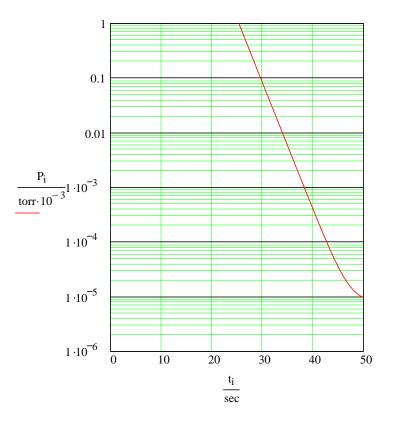
$$P_{100} = 254.784 \text{ torr}$$
PHASE I PUMP DOWN


Pump down time from 10 torr to 20 mtorr when TMPs are opened to the Vacuum Vessel. V (10.torr)

$$T_{two} := \frac{V}{S_{booster_sys}} \cdot ln\left(\frac{10 \cdot torr}{.02 \cdot torr}\right)$$
$$T_{two} = 28.432 \min$$
$$P_{o} := 10 \cdot torr$$
$$t_{0} = 0 s$$
$$P_{i} := P_{o} \cdot e$$
$$V$$
$$t_{60} = 30 \min$$

PHASE II PUMP DOWN PHASE III

Pump down time of TMP to base pressure. This depends on the bakeout system and surface conditions.


Vacuum System for a Laser IFE Chamber

Vacuum System for a Laser IFE Chamber

The same curve with a total outgassing rate Q becomes.

r := 6.5∙m torr·liter $q_{ss} := 10^{-9} \cdot \frac{\frac{1}{sec}}{cm^2}$ $Q := q_{ss} \cdot 4 \cdot \pi \cdot r^2$ $Q = 5.309 \times 10^{-3} \frac{\text{torr} \cdot \text{liter}}{\text{sec}}$

$$P_i := \frac{Q}{S} + \left(P_0 - \frac{Q}{S}\right) \cdot e^{\frac{-S}{V} \cdot t_i}$$

Vacuum System for a Laser IFE Chamber

Vacuum System for a Laser IFE Chamber

Molecular density

molecule := 1

Avogradro's number
$$N_A := 6.023 \cdot 10^{23} \cdot \frac{\text{molecule}}{\text{mole}}$$

The universal gas constant

 $R_0 := 62.364 \cdot \frac{\text{torr} \cdot \text{liter}}{\text{K} \cdot \text{mole}} \qquad R_0 = 6.236 \times 10^4 \frac{\text{torr} \cdot \text{cm}^3}{\text{K} \cdot \text{mole}}$

For a gas sample of mass W, of a gas having a molecular weight M, the general gas law is written:

$$PV = (W/M)R_0T$$

Where W/M denote the number of moles and

$$(W/M)(N_A/V) = n$$

Where n in the number of molecules per unit volume.

From these two expressions,

$$n = (N_A/R_o)(P/T)$$

The case of P=760torr, T=273.16K, and Ro in torr-cm³/K,

n=2.687x10¹⁹ molecule/cm³

Known as Loschmidt number

The number of molecules per unit volume

$$n := \frac{N_A}{R_0} \cdot \left(\frac{P}{T}\right)$$

Molecular Loading:

shot := 1

$$N_{molecule} := 10^{21} \cdot \frac{molecule}{shot}$$
 ref. 1

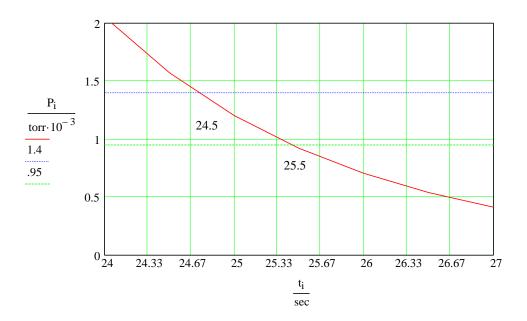
Vacuum System for a Laser IFE Chamber

Vacuum System for a Laser IFE Chamber

$$V_{\text{sphere}} = 1.15 \times 10^9 \text{cm}^3$$

 $n_{shot} \coloneqq \frac{N_{molecule}}{V_{sphere}}$

 $n_{shot} = 8.693 \times 10^{11} \text{ cm}^{-3}$


 $P_{gas} := \frac{n_{shot} \cdot R_0 \cdot T_{gas}}{N_A}$

 $T_{gas} := 1000 \cdot K$

$$P_{gas} = 9.001 \times 10^{-5} \text{torr}$$

 $P_{base} := .5 \cdot 10^{-3} \cdot torr$

 $P_{1sec} := 5P_{gas} + P_{base}$ $P_{2sec} := 10 \cdot P_{gas} + P_{base}$ $P_{1sec} = 0.95 \text{ torr} \cdot 10^{-3}$ $P_{2sec} = 1.4 \text{ torr} \cdot 10^{-3}$

Conclusion

The pressure will rise from .5 mtorr to 1.4 mtorr for 5Hz rep rate.

Vacuum System for a Laser IFE Chamber

Prepared by: Bob Parsells & Craig Priniski Scope

This analysis evaluates the pressure as a function of time in the 6.5 meter radius IFE chamber References

1. John Sethian, "Vacuum System for a Laser IFE Chamber", Jan 23, 2005.

2. A. Roth, "Vacuum Technology", North -Holand, 1996.

Assumptions

1. IFE spherical chamber 6.5 meters radius.

2. IFE mid-plane toroidal duct 10 meter radius, 80 cm high

Pumping speed

 $P_0 := 1 \cdot atm$

 $P_0 = 760 \text{ torr}$

 $S := 720000 \cdot \frac{\text{liter}}{\text{sec}}$

 $S_{eff} := \frac{2}{3} \cdot S$

 $r_{sphere} := 6.5 \cdot m$

$$V_{sphere} := \frac{4}{3} \cdot \pi \cdot r_{sphere}^{3}$$

$$V_{sphere} = 1.15 \times 10^3 \text{ m}^3$$

V_{plenum} := 145141 · liter

 $V := V_{sphere} + V_{plenum}$

i := 0 .. N

$$t_i := i \cdot \frac{200}{N} \cdot sec$$

Molecular density

molecule:= 1

Avogradro's number

 $N_A := 6.023 \cdot 10^{23} \cdot \frac{\text{molecule}}{\text{mole}}$

The universal gas constant

 $R_0 \coloneqq 62.364 {\cdot} \frac{\text{torr}{\cdot}\text{liter}}{K {\cdot}\text{mole}}$ $R_0 = 6.236 \times 10^4 \frac{\text{torr} \cdot \text{cm}^3}{\text{V}}$ K ·mole

The number of molecules per unit volume

$$\mathbf{n} \coloneqq \frac{\mathbf{N}_{\mathbf{A}}}{\mathbf{R}_{\mathbf{0}}} \cdot \left(\frac{\mathbf{P}}{\mathbf{T}}\right)$$

Molecular Loading:

shot := 1

 $N_{molecule} := 10^{21} \cdot \frac{molecule}{shot}$

ref. 1

 $V_{sphere} = 1.15 \times 10^9 \text{cm}^3$

$$n_{shot} := \frac{N_{molecule}}{V_{sphere}}$$

$$n_{shot} = 8.693 \times 10^{11} \text{ cm}^{-3}$$

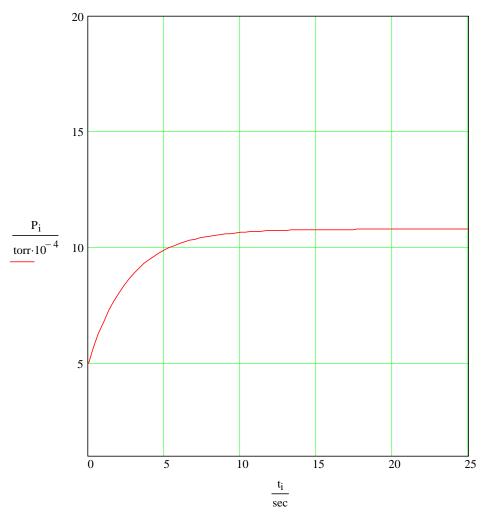
$$T_{gas} := 1000 \cdot \text{K}$$

$$\lambda := 5 \cdot \text{Hz}$$

$$P_{gas} := \frac{n_{shot} \cdot \text{R}_0 \cdot \text{T}_{gas}}{N_A}$$

$$P_{gas} = 9.001 \times 10^{-5} \text{ torr}$$

$$P_{base} := 5 \cdot 10^{-4} \cdot \text{torr}$$


The pumpdown curve with a total 5 Hz shots produses an equivalent outgassing rate Q_2 becomes.

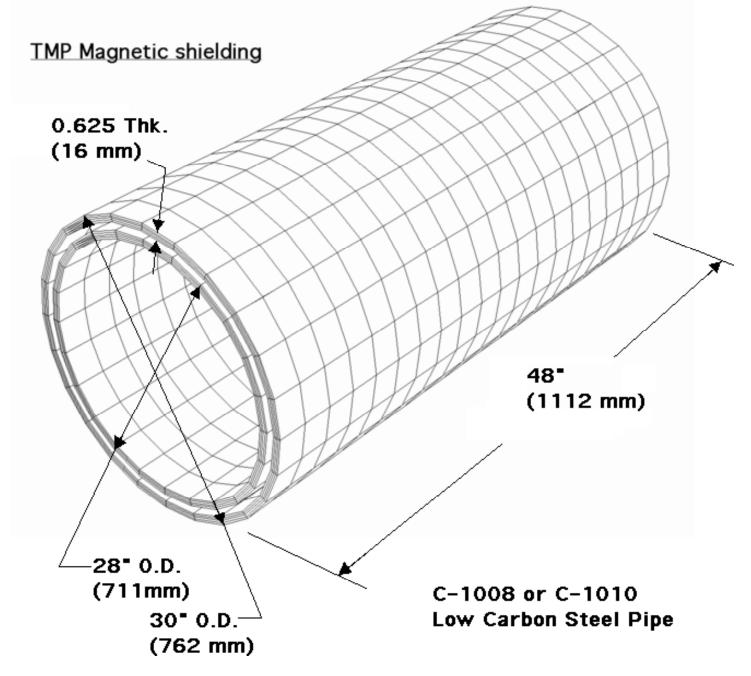
$$Q_{2} := P_{gas} \cdot V_{sphere} \cdot \lambda$$

$$Q_{2} = 517.7 \operatorname{torr} \cdot \frac{\operatorname{liter}}{\operatorname{sec}}$$

$$P_{0} := 5 \cdot 10^{-4} \cdot \operatorname{torr}$$

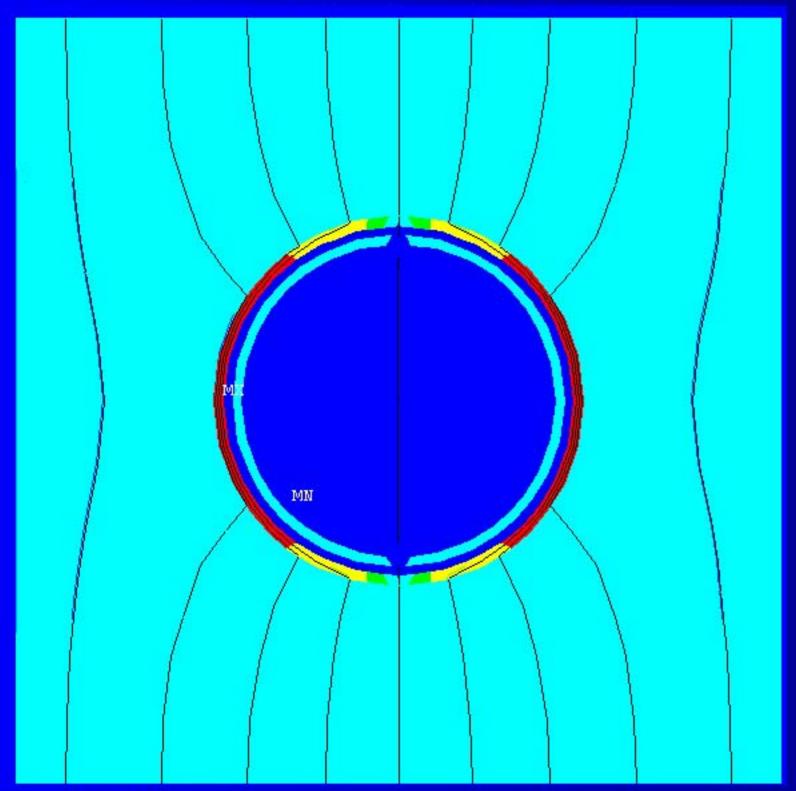
$$P_{i} := \frac{Q_{2}}{S_{eff}} + \left(P_{0} - \frac{Q_{2}}{S_{eff}}\right) \cdot e^{\frac{-S_{eff}}{V} \cdot t_{i}}$$

10.782

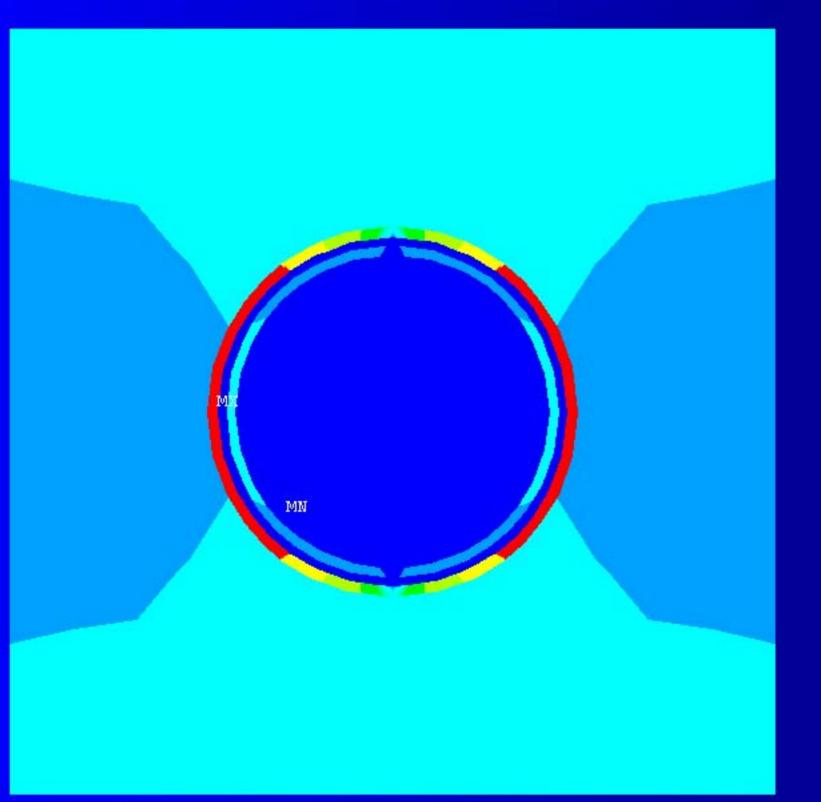

torr x 10 ⁻⁴ Operating Pressure **OPERATIONAL PRESSURE** Baseline .5 mtorr Rep Rate 5 Hz Magnetic shielding components for Varian V-6000 TMP: for a 1 KG field shielded down to < 50 gauss

2-layer shield		
30" O.D. x 0.675 Sched.30 pipe	*Low Carbon C-1010 500ft. @ \$120.0/ft.	\$60,000.00
28" O.D. x 0.625 Sched.30 pipe	*Low Carbon C-1010 500ft. @ \$115.0/ft.	\$57,500.00

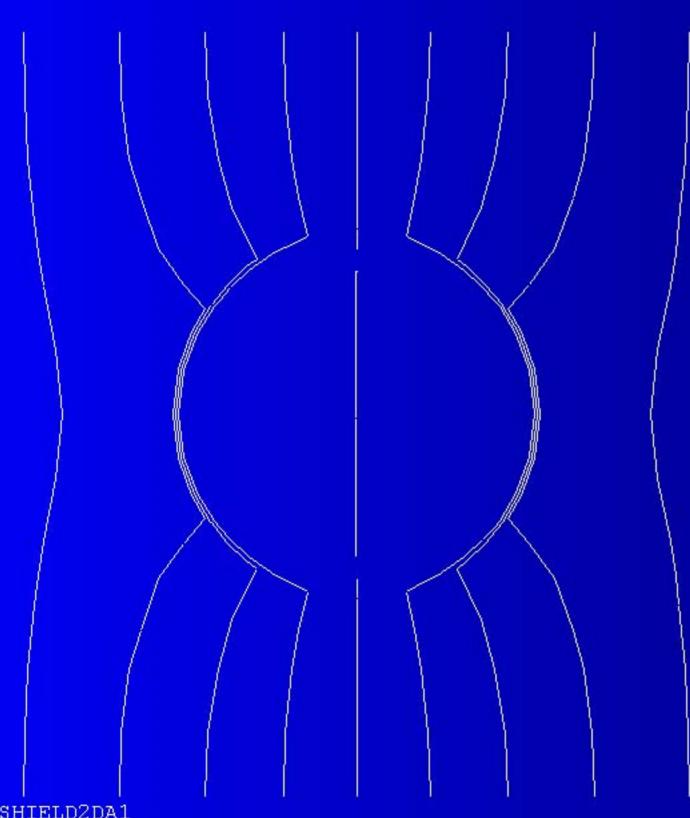
Total material cost for 120 TMP magnetic shields


\$117,500.00

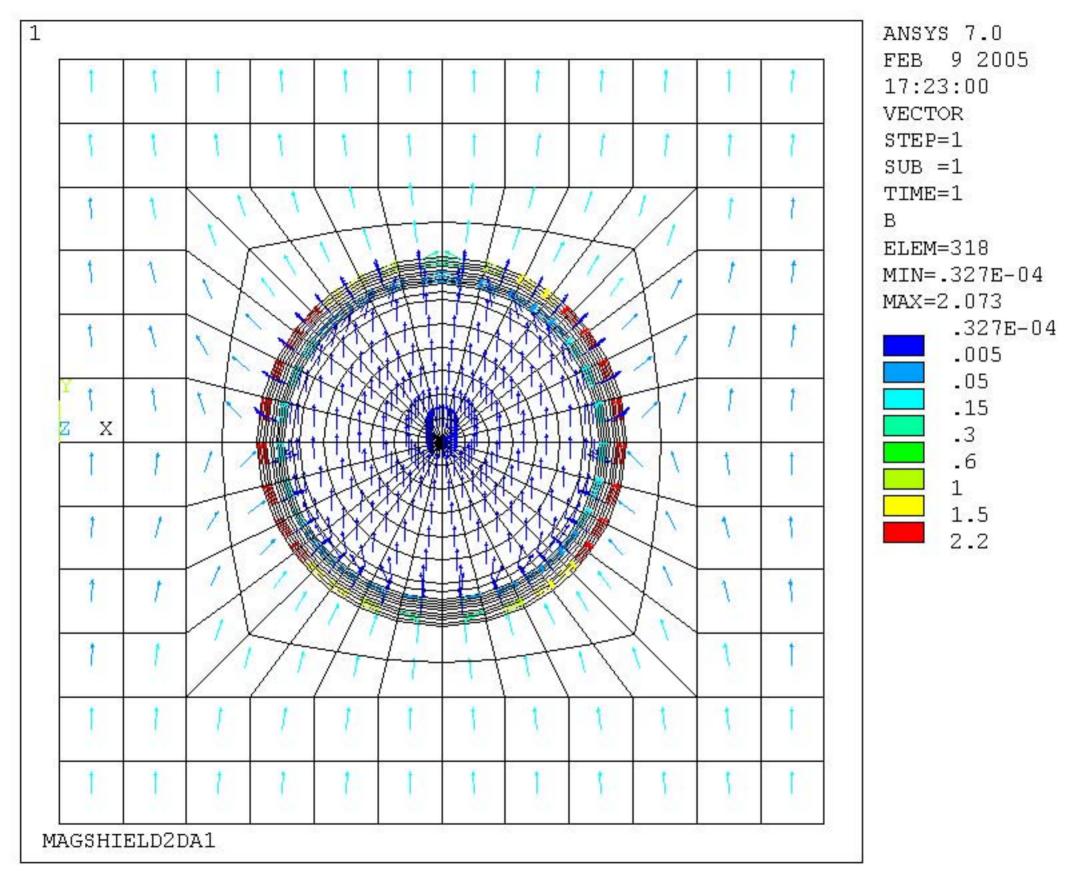
* Estimate assumes employment of seamless line pipe in C-1010 Rolled & welded C-1008 plate might be somewhat higher price.

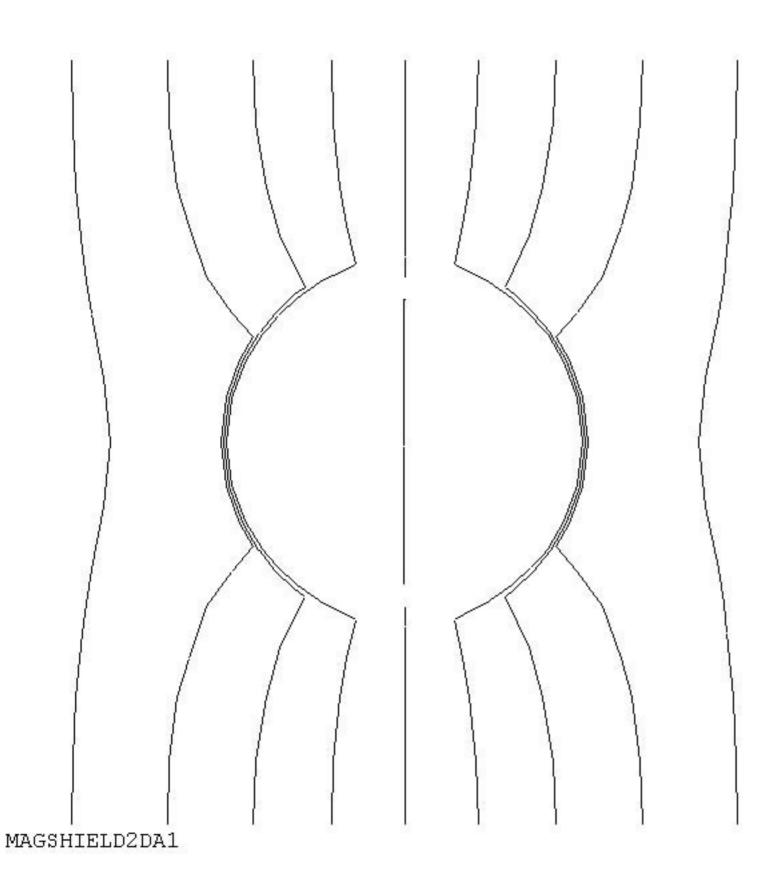

Weight per shield = ~ 1850 lbs. (includes mounts and stand-offs)

ANSYS 7.0 9 2005 FEB 17:12:26 NODAL SOLUTION STEP=1 SUB = 1TIME=1 BSUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat SMN = .188E - 04SMX =2.087 .188E-04 .005 - 50 Gauss .05 .15 .2 .4 .8 1.25 2.1


MAGSHIELD2DA1

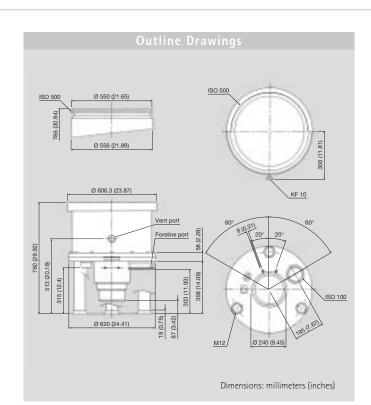
ANSYS 7.0 FEB 9 2005 17:12:26 NODAL SOLUTION STEP=1 SUB =1 TIME=1 BSUM (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat SMN = .188E - 04SMX =2.087 .188E-04 .005 .05 .15 .2


.2 .4 .8 1.25 2.1

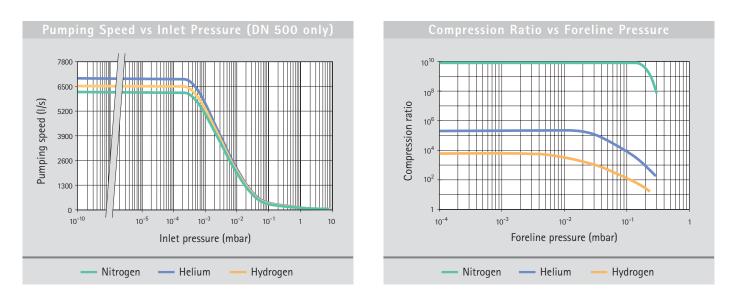

MAGSHIELD2DA1

ANSYS 7.0 FEB 9 2005 17:13:07 NODAL SOLUTION STEP=1 SUB =1 TIME=1 ΑZ RSYS=0 SMN = .1SMX = .2A =.105556 =.116667 В C =.127778 D =.138889 =.15 Е =.161111 F G =.172222 H =.183333 I =.194444

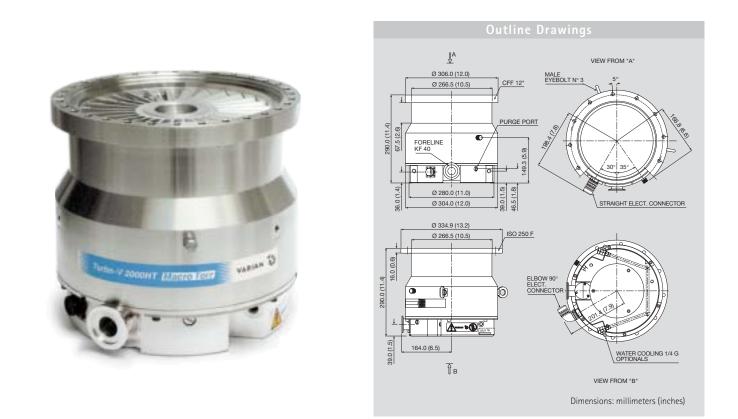
MAGSHIELD2DA1


ANSYS 7.0 FEB 9 2005 17:14:06 NODAL SOLUTION STEP=1 SUB =1 TIME=1 ΑZ RSYS=0 SMN = .1SMX = .2A =.105556 =.116667 В C =.127778 =.138889 D =.15 Ε =.161111 F =.172222 G H =.183333 Ι =.194444

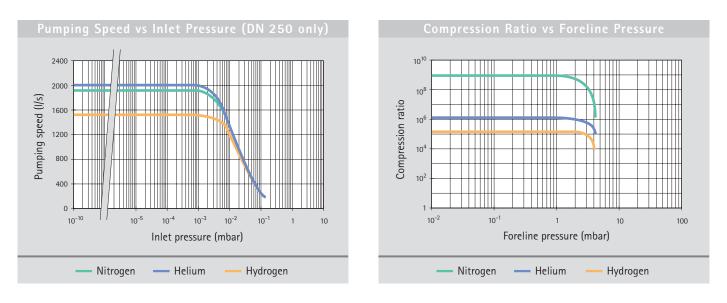
Vacuum System for a Laser IFE Chamber Component Cost Estimate


Key	Equipment Name	Unit Cost	Qty	Total	Qty Discount	D	iscount Total	Total
А	Varian Turbo-V 6000 (on target chamber)	\$ 70,000.00	120	\$ 8,400,000.00	20%	\$	1,680,000.00	\$ 6,720,000.00
В	Varian Turbo-V 2000 HT (on each beam tube)	\$ 25,000.00	60	\$ 1,500,000.00	20%	\$	300,000.00	\$ 1,200,000.00
С	Magnetic Shielding (only on Turbo-V 6000)	\$ 1,000.00	120	\$ 120,000.00	0%	\$	-	\$ 120,000.00
D	Kinney KMBD -2000 Backing Pumps	\$ 41,000.00	20	\$ 820,000.00	20%	\$	164,000.00	\$ 656,000.00
E	TMP/Target Chamber Isolation Valves (VAT valves, 20" throughput)	\$ 20,000.00	120	\$ 2,400,000.00	20%	\$	480,000.00	\$ 1,920,000.00
F	Beam Tube (TMP) Isolation Valves (VAT valves, 10" throughput)	\$ 12,000.00	60	\$ 720,000.00	20%	\$	144,000.00	\$ 576,000.00
G	Roughing Valves (between TMP exhaust/Kinney Inlet)	\$ 8,000.00	20	\$ 160,000.00	20%	\$	32,000.00	\$ 128,000.00
н	Gate Valves (after Kinney discharge)	\$ 8,000.00	20	\$ 160,000.00	20%	\$	32,000.00	\$ 128,000.00
I	Dycor RGA (0-200 AMU w/ pumping system)	\$ 23,000.00	4	\$ 92,000.00	5%	\$	4,600.00	\$ 87,400.00
J	Instrumentation and Control	\$ 200,000.00		\$ 200,000.00	0%	\$	-	\$ 200,000.00
к	Target Chamber Isolation Valves (for roughing pump interface-VAT valves, 8" throughput)	\$ 8,000.00	10	\$ 80,000.00	10%	\$	8,000.00	\$ 72,000.00
L	Heli-Flex Seals	\$ 500.00	380	\$ 190,000.00	5%	\$	9,500.00	\$ 190,000.00
М	Gas Holding Tanks (10 m ³)	\$ 150,000.00	4	\$ 600,000.00	0%	\$	-	\$ 600,000.00
N	Interfacing Piping	\$ 250,000.00		\$ 250,000.00	0%	\$	-	\$ 250,000.00
0	High Vacuum Ion Gage	\$ 5,000.00	6	\$ 30,000.00	0%	\$	-	\$ 5,000.00
	Totals			\$ 15,722,000.00		\$	2,854,100.00	\$ 12,852,400.00

Turbo-V 6000



Technica	al Specifications		
Pumping speed I/s	N ₂ : 6,000	He: 7,000	H ₂ : 6,500
Compression ratio	$N_2: > 1 \times 10^{10}$	He: 2.3 x 10 ⁵	H ₂ : 8 x 10 ³
Base pressure with recommended mechanical pump:	< 1 x	10 ⁻¹⁰ mbar (< 1 x 10 ⁻¹⁰	Torr)
Inlet flange		ISO 500	
Foreline flange		ISO 100	
Rotational speed		14,000 rpm	
Startup time		30 minutes	
Recommended forepump		Varian DS 1602	
Operating position		Vertical ±10°	
Cooling requirements		Water	
Bakeout temperature	80 °C	Cat inlet flange (ISO vei	rsion)
Vibration level (displacement)	-	≤ 0.05 µm at inlet flang	e
Weight kg (lbs)		250 (550)	
Lubricant	Varia	in T.A. oil (charge 1,000	cm ³)



Ordering Int	formation	
Description	Weight kg (lbs)	Part Number
Pump		
Turbo-V 6000 pump with ISO 500 inlet flange	282.0 (620.0)	On request
Controllers		
Turbo-V 6000 controller, 120 V	50.0 (110.0)	9699591
Turbo-V 6000 controller, 220 V	50.0 (110.0)	9699491
Accessories		
Inlet screen, DN 500	10.0 (22.0)	9699308
Vent valve with fixed delay time	2.0 (4.0)	9699843
Vent device with adjustable delay time	2.2 (5.0)	9699831
Replacement Parts		
Varian T.A. oil, 100 cm ³	0.5 (1.0)	9699901
Varian T.A. oil, 1000 cm ³	1.4 (3.0)	9699902

Technical Specifications					
Pumping speed	N ₂ : 1,950 l/s	He: 2,000 l/s	H ₂ : 1,500 l/s		
Compression ratio	N_2 : >1 x 10 ⁹ He: 2 x 10 ⁶ H ₂ : 2 x 10 ⁵				
Base pressure* (minimum with recommended mechanical forepump) 1 x 10 ⁻¹⁰ mbar (7.5 x 10 ⁻¹¹ Torr)			orr)		
Inlet flange	CF 1	2" ISO 250-F bo	olted		
Foreline flange		KF 40			
Rotational speed		33,000 rpm			
Startup time	10 minutes				
Recommended forepump	Mechanical: Varian DS 602 Dry scroll: Varian TS600				
Operating position		Any			
Cooling requirements		Water			
Bakeout temperature	120 °C 80 °C r	max. at inlet flange (CF nax. at inlet flange (ISO	flange) flange)		
Vibration level (displacement)		<0.01 µm at inlet flange			
Weight kg (lbs)		ISO 250: 44 (96.8) CF 12": 55 (121.0)			

* According to standard DIN 28 428, the base pressure is measured in a leak-free test dome, 48 hours after completion of test dome bake-out, with a Turbopump fitted with a ConFlat flange and using the recommended backing pump.

Ordering	In form	a a ti a ra

Description	Weight kg (lbs)	Part Number
Pumps		
Turbo-V 2000HT, ISO 250-F bolted flange	44.0 (96.8)	9699059
Turbo-V 2000HT, 12" CF flange	55.0 (121.0)	9699084
Controllers		
Turbo-V 2000HT controller, 220 V	19.0 (42.0)	9699462
Turbo-V 2000HT controller, 120 V	19.0 (42.0)	9699562
Accessories		
Inlet screen, DN 250	1.0 (2.0)	9699350
Water cooling kit	0.5 (1.0)	9699338
Plastic water cooling kit	0.5 (1.0)	9699348
Vent flange, NW 10 KF / M8	0.5 (1.0)	9699108
Vent valve with fixed delay time	2.0 (4.0)	9699843
Vent device with adjustable delay time	2.2 (5.0)	9699831
Heavy duty vent valve	2.2 (5.0)	9699842
Purge valve 10 SCCM NW16KF – M12	0.2 (0.5)	9699239
Purge valve 10 SCCM ¹ / ₄ Swagelok – M12	0.2 (0.5)	9699240
Purge valve 20 SCCM NW16KF - M12	0.2 (0.5)	9699241
Purge valve 20 SCCM ¹ / ₄ Swagelok – M12	0.2 (0.5)	9699242
Purge valve 10 SCCM ¹ / ₄ Swagelok - ¹ / ₄ Swagelok	0.2 (0.5)	9699232
Purge valve 20 SCCM ¹ / ₄ Swagelok – ¹ / ₄ Swagelok	0.2 (0.5)	9699236