Magnetic Deflection of Ionized Target Ions

D. V. Rose, A. E. Robson, J. D. Sethian, D. R. Welch, and R. E. Clark

March 3, 2005 HAPL Meeting, NRL

Solid wall, magnetic deflection

- 1. Cusp magnetic field imposed on to the chamber (external coils)
- 2. Ions compress field against the chamber wall: (chamber wall conserves flux)
- 3. Because these are energetic particles, that conserve canonical angular momentum (in the absence of collisions), *lons never get to the wall!!*
- Ions leak out of cusp (5 μsec), exit chamber through toroidal slot and holes at poles
- 5. Magnetic field directs ions to large area collectors
- 6. Energy in the collectors is harnessed as high grade heat

2

J. Perkins calculated target ion spectra (9th HAPL, UCLA, June 2-3, 2004)

"Debris kinetic energy spectra"

Perkins "combined" ion spectra:

These energy spectra are sampled directly by LSP for creating PIC particles. ⁴

EMHD algorithm for LSP under development

- Quasi-neutrality assumed
- Displacement current ignored
- PIC ions (can undergo dE/dx collisions)
- Massless electron fluid (cold) with finite scalar conductivity
- Only ion time-scales, rather than electron time-scales, need to be resolved.
- Model is based on previous work, e.g., Omelchenko & Sudan, JCP 133, 146 (1997), and references therein.
- Model used extensively for intense ion beam transport in preformed plasmas, ion rings, and field-reversed configurations.

EMHD model equations:

Currents are source terms for curl equations:

$$\vec{\nabla} \times \vec{B} = \frac{4\pi}{c} \left(\vec{j}_e + \vec{j}_i \right)$$
$$\frac{\partial \vec{B}}{\partial t} = -c \vec{\nabla} \times \vec{E}$$

Ohm's Law for electron fluid:

$$\vec{E} = \frac{1}{\sigma}\vec{j}_e + \frac{\vec{j}_e \times \vec{B}}{\rho_e c}$$

Scalar conductivity can be calculated from neutral collision frequencies:

$$\sigma = \frac{\omega_{pe}^2}{4\pi (\nu_{ei} + \nu_{en})}$$

6

"Full-scale" chamber simulations (PRELIMINARY RESULTS)

- 5-meter radius chamber, 2D (r,z) simulation
- 4 coil system for cusp B-field shape
- 10-cm initial radius plasma
 - Perkins "combined" energy spectra for light ion species only (H⁺, D⁺, T⁺, ³He⁺⁺, ⁴He⁺⁺)
 - 10¹⁷ cm⁻³ combined initial ion density (uniform)*

Magnetic field maps:

Coil configuration:

r(cm)	z(cm)	I(MA)
250	600	6.05
600	250	6.05
250	-600	-6.05
600	-250	-6.05

Contours of constant A

8

Orbit Calculation – ion positions at 500 ns

"Ports" at escape points in chamber adde to estimate loss currents

dz ~ 80 cm (width of slot) dr ~ 50 cm (radius of hole)

Preliminary EMHD simulations track magnetic field "push" during early phases of ion expansion.

T=500 ns

T = 0

1.556E+004 500 1.400E+004 1.245E+004 400 1.089E+004 9336. 300 و ₇₇₈وب £ 6224. 200 4668. ^{3112.} 100 1556. 0 0.0000 0 100 300 500 0 200 300 500 200 400 100 400 Z (cm) Z (cm)

Status:

- Simulations using the Perkins' target ion spectra:
 - We have added a capability to LSP that loads ion energy spectra from tables
- EMHD model
 - EMHD model has been added to LSP.
 - Testing/benchmarking against simple models underway
- Results
 - Preliminary EMHD simulations with 10 cm initial radius plasma volumes suggest that ions DO NOT STRIKE THE WALL during the first shock.
 - Preliminary estimates for escape zone sizes determined.

Supplemental/poster slides

Test simulation: cusp field, small chamber, reduced energy ions:

Particle energy scaling estimate: For $R_c=20$ cm, assume maximum ion gyro-radius of $(1/2)^*R_c$ (use average |B|=0.5 T), then $v_{ion} \sim 0.03c$ for protons, or ~120 keV. Here I use 45 keV protons (directed energy) with a 1 keV thermal spread.

Simple cusp field for a 20-cm chamber, 45 keV protons: No self-field generation (Particle orbit calculations ONLY)

~30% of the ion energy and charge remains after 250 ns.

10¹⁴ cm⁻³ plasma:

(Detail of |B| and particles near center of chamber)

5 ns

10 ns

Ion orbit calculation (no self-fields)

~30% of the ions leave system after 600 ns.

Full EM simulation with low initial plasma density:

For an initial plasma density of 10¹² cm⁻³, ion orbit patterns begin to fill in from self-consistent E-fields. Small ion diamagnetic effects allow slightly deeper penetration into magnetic field.

Simple estimate of "stopping distance" for expanding spherical plasma shell:

A Look at Diamagnetic Plasma Penetration in 1D

1D EMHD model*

- The model assumes local charge neutrality everywhere.
- Electrons are cold, massless, and with a local ExB drift velocity
- "Beam" ions are kinetic, with an analytic perpendicular distribution function.

Analysis is "local", meaning that B_o is approximately uniform with in the ion blob.

*Adapted from K. Papadopoulos, *et al.*, Phys. Fluids B **3**, 1075 (1991).

Model Equations: Ions Penetrating a Magnetized Vacuum

Quasi-neutrality:	$n_b(x) = n_e(x)$
Electron velocity:	$\vec{u}_e = \frac{c}{B_y} \left(-E_z \hat{i} + E_x \hat{k} \right)$
Continuity:	$\vec{u}_e \cdot \nabla \left(\frac{n_e}{B_y} \right) = 0$
Ion Distribution:	$F_b\left(\frac{H_{\perp}}{T_b}\right), H_{\perp} = \frac{1}{2}M_b v_{\perp}^2 + e\phi(x)$
Ion Density:	$n_b(x) = n_{b0} \int_0^\infty F_b\left(u + \frac{e\phi}{T_b}\right) du$
Ion Pressure	$P_b(x) = n_{b0} T_b \int_0^\infty F_b \left(u + \frac{e\phi}{T_b} \right) u du$
Force Balance:	$\vec{\nabla}P_b = n_b \left e \right \vec{E}, \vec{E} = -\vec{\nabla}\phi$
Pressure Balance:	$\nabla \left(\frac{B_y^2}{8\pi} + P_b \right) = 0$

Magnetic field exclusion:

Assume a perpendicular ion energy distribution given by:

$$F_b\left(\frac{H_{\perp}}{T_b}\right) = \exp\left(-\frac{M_b v_{\perp}^2}{2T_b} - \frac{e\phi}{T_b}\right)$$

Assume a 1D density profile: $n_e(x) = n_{e0} \exp\left(-\frac{x^2}{b^2}\right)$

The ion beam density and pressure are then given as:

$$n_b(x) = n_{b0} \exp\left(-\frac{e\phi}{T_b}\right), \quad P_b(x) = n_b(x)T_b$$

The potential and electric fields are then: $\phi(x) = \frac{T_b}{|e|} \frac{x^2}{b^2}$, $E_x(x) = -\frac{2T_b}{|e|} \frac{x}{b^2}$

From pressure balance, this gives a magnetic field profile of:

$$B_{y}(x) = B_{0} \left[1 - \frac{8\pi n_{b0} e T_{b}}{B_{0}^{2}} \exp\left(-\frac{x^{2}}{b^{2}}\right) \right]^{1/2}$$

26

Sample Result: $B_0(x) = \frac{2}{5}x$ $B_y(x) = B_0(x) \left[1 - \frac{2\mu_0 n_{b0} eT_b}{B_0^2(x)} \exp\left(-\frac{(x-x_0)^2}{b^2}\right) \right]^{1/2}$ (MKS)

(MKS units)

27

In the limit that the argument of the square root is > 0, this gives a simple diamagnetic reduction to the applied field. I assume that when the argument of the square root IS < 0, then the applied field is too wimpy to impede the drifting cloud.

 $By[x_] := B0[x]^*(Max[1 - 2^*mu0^*nb[x]^*q^*Tb^*(B0[x])^{(-2)}, 0])^{(0.5)};$

Plot[(By[x]), {x, 0, 2*x0}]