# Neutronics Assessment of Solid Breeder Blanket Concept

#### **Mohamed Sawan**

Fusion Technology Institute University of Wisconsin, Madison, WI

With contributions from I. Sviatoslavsky (UW), A.R. Raffray (UCSD), X. Wang (UCSD), and L. El-Guebaly (UW)

> HAPL Meeting PPPL October 27-28, 2004

1



## **Basic Assumptions**

- ≻1 mm W armor on ferritic steel (F82H) FW
- Used target spectrum from LASNEX results (Perkins) for NRL direct-drive target
- 70.5% of target yield carried by neutrons with 12.4 MeV average energy
- ≻1.8 GW fusion power
- Chamber radius 6.5 m at mid-plane









### Radial Build of SB Blanket







- Radial build of ARIES-CS SB blanket used
- 65 cm total blanket thickness
- Li<sub>4</sub>SiO<sub>4</sub> breeder and RAFS F82H structure
- 1 mm W armor used in front of FW
- Uniform Li enrichment used

# Material composition in radial layers includes module sides

- **FW**: 40.7% FS, 59.3% He
- **Be zone:** 53% Be, 6% FS, 41% He

**SB** zone: 51% SB, 2.5% Be, 6% FS, 40.5% He

CP zone: 52% FS, 2.5 Be, 45.5% He



# Lithium Enrichment



- With near full coverage in HAPL chamber a uniform enrichment of 40% Li-6 is adequate with TBR of 1.18
- Solid angle fraction subtended by beam ports is ~0.4% with minimal impact on overall TBR



- Moderate power densities in front Be and SB layers ensure maximum temperature limits (750°C Be, 950°C SB) will not be exceeded with the current radial build even if a uniform enrichment of 90% is used
- > 40% enrichment used in reference design
- Li enrichment can be used as a knob in design allowing for adjustment of TBR and shielding if needed



## Nuclear Heating

| Zone        | Thickness | <b>Power Density</b> |  |  |
|-------------|-----------|----------------------|--|--|
|             | (cm)      | $(W/cm^3)$           |  |  |
| W           | 0.1       | 66.52                |  |  |
| FW          | 2.8       | 7.95                 |  |  |
| Be-1        | 2.0       | 8.77                 |  |  |
| СР          | 0.6       | 9.57                 |  |  |
| <b>SB-1</b> | 0.9       | 25.06                |  |  |
| СР          | 0.6       | 8.99                 |  |  |
| Be-2        | 2.2       | 7.37                 |  |  |
| СР          | 0.6       | 8.12                 |  |  |
| <b>SB-2</b> | 1.0       | 22.21                |  |  |
| СР          | 0.6       | 7.49                 |  |  |
| Be-3        | 2.5       | 5.89                 |  |  |
| СР          | 0.6       | 6.57                 |  |  |
| SB-3        | 1.0       | 19.07                |  |  |
| СР          | 0.6       | 5.99                 |  |  |
| Be-4        | 3.0       | 4.49                 |  |  |
| СР          | 0.6       | 5.09                 |  |  |
| SB-4        | 1.0       | 14.03                |  |  |
| СР          | 0.6       | 4.63                 |  |  |
| SB-5        | 1.1       | 12.93                |  |  |
| СР          | 0.6       | 4.14                 |  |  |
| Be-5        | 4.0       | 2.89                 |  |  |
| СР          | 0.6       | 3.31                 |  |  |
| <b>SB-6</b> | 1.3       | 9.26                 |  |  |
| СР          | 0.6       | 2.94                 |  |  |
| <b>SB-7</b> | 1.4       | 8.40                 |  |  |
| СР          | 0.6       | 2.56                 |  |  |
| Be-6        | 5.4       | 1.63                 |  |  |
| СР          | 0.6       | 1.91                 |  |  |
| <b>SB-8</b> | 1.8       | 4.88                 |  |  |
| СР          | 0.6       | 1.65                 |  |  |
| SB-9        | 2.0       | 3.55                 |  |  |
| СР          | 0.6       | 1.42                 |  |  |
| SB-10       | 2.0       | 3.08                 |  |  |
| СР          | 0.6       | 1.23                 |  |  |
| Manifold    | 20.0      | 0.64                 |  |  |

Nuclear heating calculated in radial zones of blanket and used in thermal hydraulics analysis



Plant Thermal Power for 1800 MW Fusion Power

**Total Thermal Power = 2302 MW** 

2254 MW removed from 65 cm blanket by He

(531 MW surface + 1723 MW volumetric)

48 MW removed from 30 cm VV by He



#### Peak Radiation Damage in Blanket

|                             | dpa/FPY | He appm/FPY |  |  |  |
|-----------------------------|---------|-------------|--|--|--|
| W armor                     | 6.4     | 4.6         |  |  |  |
| FW                          | 20.1    | 183         |  |  |  |
|                             |         |             |  |  |  |
| Blanket lifetime is ~10 FPY |         |             |  |  |  |

#### Peak EOL (40 FPY) Radiation Damage in 30 cm VV

|                                       | dpa  | He appm |  |  |  |
|---------------------------------------|------|---------|--|--|--|
| Front of VV                           | 19.3 | 33.6    |  |  |  |
| Back of VV                            | 2.5  | 0.4     |  |  |  |
|                                       |      |         |  |  |  |
| ►VV is lifetime component             |      |         |  |  |  |
| ► Rewelding is possible at back of VV |      |         |  |  |  |



#### Comparison between Nuclear Performance of Li and SB Blankets in HAPL

|                                                    | Li Blanket | SB Blanket |
|----------------------------------------------------|------------|------------|
| Overall TBR                                        | 1.12       | 1.17       |
| Blanket thickness (cm)                             | 47         | 65         |
| Total Thermal power (MW)                           | 2103       | 2302       |
| Power density in FW structure (W/cm <sup>3</sup> ) | 13         | 20         |
| Blanket lifetime (FPY)                             | 10         | 10         |
| Required VV thickness (cm)                         | 50         | 30         |

- Thicker SB blanket with significant amount of Be required for tritium breeding
- ➤ The large amount of Be in SB blanket yields ~10% more thermal power
- While FW radiation damage is similar about 50% higher nuclear heating is generated in FW of SB blanket



Thicker VV required with Li blanket to allow rewelding at back of VV

### Neutronics assessment of SB Flowing Bed Blanket

- The layered 42.2 cm breeding region is replaced by a homogenized composition of 3.67% FS, 62.61% SB, 33.72% He
- The 20 cm manifold zone at the back has 57.5% FS, 42.5% He
- Total blanket thickness 65 cm
- Blanket thickness allowed to change by changing thickness of breeding region
- Three breeders considered (Li<sub>2</sub>O, Li<sub>4</sub>SiO<sub>4</sub>, Li<sub>2</sub>TiO<sub>3</sub>)
- Considered the option of adding Be zones (53% Be, 6% FS, 41% He) in the breeding region to enhance TBR
- ➤ Used uniform Li-6 enrichment in SB



- We must add Be and/or increase blanket thickness if the Li<sub>4</sub>SiO<sub>4</sub> or Li<sub>2</sub>TiO<sub>3</sub> breeders are used
- With Li<sub>2</sub>O we can keep blanket thickness at 65 cm and there is no need for enrichment



#### Adding Be and Increasing Thickness to Enhance TBR





With Li<sub>4</sub>SiO<sub>4</sub> or Li<sub>2</sub>TiO<sub>3</sub> breeders blanket thickness should be increased to ~85 cm in addition to enriching and adding up to 20% Be zone in breeding region





#### Neutronics Parameters for SB Flowing Bed Blanket Options

| Breeder                          | Enrich | Be   | Blanket | Local | Blanket  | VV dpa | Required |
|----------------------------------|--------|------|---------|-------|----------|--------|----------|
|                                  |        | zone | Thick   | TBR   | lifetime | @ 40   | VV thick |
|                                  |        |      | (cm)    |       | (FPY)    | FPY    | (cm)     |
| Li <sub>2</sub> O                | Nat.   | 0%   | 65      | 1.142 | 10       | 17.3   | 30       |
| Li <sub>4</sub> SiO <sub>4</sub> | 40%    | 20%  | 85      | 1.139 | 10       | 4      | 15       |
| Li <sub>2</sub> TiO <sub>3</sub> | 50%    | 20%  | 85      | 1.132 | 10       | 2.5    | 10       |



Using Li<sub>2</sub>O flowing bed allows achieving adequate TBR in the 65 cm blanket without enrichment or adding Be
 Using Li<sub>4</sub>SiO<sub>4</sub> or Li<sub>2</sub>TiO<sub>3</sub> flowing bed a 20 cm thicker blanket should be used with smaller amount of Be compared to the static layered SB case. A much thinner VV can also be used



# Summary

- Overall TBR >1.1 can be achieved with 65 cm thick SB blanket with significant amount of Be and Li-6 enrichment
- VV can be lifetime component and its back can be reweldable if its thickness is at least 30 cm
- ≻Blanket lifetime expected to be ~10 FPY
- For 1800 MW<sub>f</sub>, total thermal power is 2300 MW<sub>th</sub> which is ~10% larger than that in Li blanket. About 50% higher nuclear heating is generated in FW and front part of blanket
  Using Li SiO, or Li TiO, flowing had a 20 cm thicker blanket
- Using Li<sub>4</sub>SiO<sub>4</sub> or Li<sub>2</sub>TiO<sub>3</sub> flowing bed a 20 cm thicker blanket should be used with smaller amount of Be and much thinner VV compared to the static layered SB case

