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Progress on Three Modeling Issues

® Threat spectra target source computed by BUCKY.
> Fluid approximation not valid (TOFE ’'04).
» Hybrid fluid-kinetic approximation.
® lon threat time of flight transport to first wall and
deposition in wall computed by BUCKY.

> Temporal prediction of ion threat at the first surface in
BUCKY improved (piece-wise continuous model replaces
discrete model.) Model verified.

®* Chamber—first wall integrated calculation computed by
BUCKY.

» Replace two region model with integrated e.o.s. and
conductivity models. Modifications completed.
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DT Core, DT-CH Shock, and CH-Au Shock
WISCONSIN Will Exemplify the Issues

MADISON

* Neutrons get produced within ~30 ps. ® Each point represents a Lagrangian zone
108 N of constant mass.
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@ At 34.592 ns, the DT-CH Shock Thickness and

WisCONSIN Incoming lon Mean Free Paths Become Comparable
DT DT-CH CH-Au
Core Shock Shock
Tahock (CM) < 0.001 0.026 1.1
Aty . (cm) < 0.001 0.02 0.004
Vihock (CTV/S) 6.6x10% | 55x10% | 8.6 x 107
n, (cm) 1.5x10% | 51x10% | 5.0 x 108
T. (keV) 276 86 2.8
T, (keV) 72 47 0.69
Ave. charge state 1 g; 1 'EUH 316
Al e / P > 1000 1.1
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By 30 ps after Ignition, DT-CH Shock Wave
Is Ineffective at Transferring Energy

® Ignition begins at ~34.56 ns.

* Mean-free path calculations include Hydrodynamic prediction of
. . .. . 500 — ; A B —
ion-ion collisions and ion-electron drag. ion energy in shock frame

® Aqhock ! Mfp ratio quickly falls.
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Implications for HAPL lons

®* Hydrodynamic assumption of perfect momentum transfer
between Lagrangian zones fails after ~25 ps.

®* By ~40 ps after ignition, ions in the shock wave are free
streaming.

® Energy spectrum of ions hitting the first wall will be of
lower energy than estimated by purely hydrodynamic
codes.

» Effect is being evaluated using the Icarus (SNL)
Discrete Simulation Monte Carlo (DSMC) computer
code.

» UW 1-D radiation hydrodynamics code, BUCKY, will
be modified to predict the HAPL ion energy spectrum.
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THE UNIVERSITY

WISCONSIN

UW is Simulating Target Explosions Using the

MADISON

Icarus Direct Simulation Monte Carlo (DSMC) Code

ne Step1
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R(mm)

lcarus mesh for the
HAPL problem.
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® Code written by Dr. Tim Bartel, SNL.
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lon threat time of flight transport to first wall
and deposition in wall computed by BUCKY.

®* Temporal prediction of ion threat at the first surface

improved (piece-wise continuous model replaces
discrete model.)

> BUCKY results reproduced in “stand-alone” simulation
and compared to new model.

» Further testing and comparisons.

> Implementation in BUCKY with verification and
validation. . wan Temerature ve. Time - Al Tines
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@ Select a portion of the HAPL ion spectrum
WISCONSIN to simulate using new model

MMMMMMM
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*lon energies between 150 keV and 5 MeV
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W Discrete ion spectrum

MMMMMMM

Initial ion distribution < 0.5 cm
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Outermost ions have highest
velocities. Time-of-flight spreading
widens pulse length at first wall.

JES/GAM 2004 Fusion Technology Institute, University of Wisconsin 11



TTTTTTTTTTTTT

Discrete ion spectrum(2)
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W Discrete ion spectrum(3)
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Continuous ion spectrum

WISCONSIN
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Continuous ion spectrum(2)
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W Continuous ion spectrum(3)
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@ Surface temperature vs. time for discrete and

WiSCONSIN piece-wise continuous ion spectrums
E . Time integrated
5 source is the
% zor - same for both
= curves.
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@ Chamber and first wall integrated
WiSCONSIN calculation computed by BUCKY.

)47 Two different models

communicate across

boundary.
Radiation hydrodynamics, Heat conduction,
plasma properties solid state properties.

Replace two region model with single region model with
integrated equation of state and conductivity for plasma
and solid state materials.
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Future work in threat spectra task

®* Perform DSMC analysis of long mean-free path ions
and modify hydrodynamic model.

® Verify and validate BUCKY for new models.

® Continue with improved simulations for HAPL reactor
design.

® Continue to interface with wall response simulations
and cavity clearing simulations.
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