Threat Spectra Calculations for HAPL Chamber First Wall

Greg Moses, John Santarius, and Milad Fatenejad

HAPL Team Meeting Princeton Plasma Physics Laboratory

October 27-28, 2004

- Threat spectra target source computed by BUCKY.
 - > Fluid approximation not valid (*TOFE '04*).

> Hybrid fluid-kinetic approximation.

- Ion threat time of flight transport to first wall and deposition in wall computed by BUCKY.
 - > Temporal prediction of ion threat at the first surface in BUCKY improved (piece-wise continuous model replaces discrete model.) Model verified.
- Chamber—first wall integrated calculation computed by BUCKY.
 - Replace two region model with integrated e.o.s. and conductivity models. Modifications completed.

JFS/GAM 2004

the Time Near Ignition Will Be the Focus

Lagrangian constant-mass zones from BUCKY run of HAPL case

DT Core, DT-CH Shock, and CH-Au Shock Will Exemplify the Issues

Neutrons get produced within ~30 ps.

• Each point represents a Lagrangian zone of constant mass.

At 34.592 ns, the DT-CH Shock Thickness and Incoming Ion Mean Free Paths Become Comparable

	DT Core	DT-CH Shock	CH-Au Shock
r _{shock} (cm)	< 0.001	0.026	1.1
$\Delta r_{\rm shock} ({\rm cm})$	< 0.001	0.02	0.004
v _{shock} (cm/s)	6.6 x 10 ⁶	5.5 x 10 ⁸	8.6 x 10 ⁷
$n_i (cm^{-3})$	1.5 x 10 ²⁶	5.1 x 10 ²⁴	5.0 x 10 ¹⁸
T _i (keV)	276	86	2.8
T _e (keV)	72	47	0.69
Ave. charge state	1	DT 1 CH 1	CH 1 Au 36
$\Delta r_{\rm shock}$ / mfp	> 1000	1.1	0.001

By 30 ps after Ignition, DT-CH Shock Wave Is Ineffective at Transferring Energy

- Ignition begins at ~34.56 ns.
- Mean-free path calculations include ion-ion collisions and ion-electron drag.
- 10 5 Shock thickness / Mean free path 2 1 0.5 0.2 0.1 34.58 34.585 34.59 34.595 34.6 Time (ns)

 Δ_{shock} / mfp ratio quickly falls.

- Hydrodynamic assumption of perfect momentum transfer between Lagrangian zones fails after ~25 ps.
- By ~40 ps after ignition, ions in the shock wave are free streaming.
- Energy spectrum of ions hitting the first wall will be of lower energy than estimated by purely hydrodynamic codes.
 - Effect is being evaluated using the Icarus (SNL) Discrete Simulation Monte Carlo (DSMC) computer code.
 - > UW 1-D radiation hydrodynamics code, BUCKY, will be modified to predict the HAPL ion energy spectrum.

UW is Simulating Target Explosions Using the *Icarus* Direct Simulation Monte Carlo (DSMC) Code

• Code written by Dr. Tim Bartel, SNL.

- Temporal prediction of ion threat at the first surface improved (piece-wise continuous model replaces discrete model.)
 - > BUCKY results reproduced in "stand-alone" simulation and compared to new model.
 - Further testing and comparisons.
 - > Implementation in BUCKY with verification and

JFS/GAM 2004

Select a portion of the HAPL ion spectrum to simulate using new model

Ion energies between 150 keV and 5 MeV

JFS/GAM 2004

Outermost ions have highest velocities. Time-of-flight spreading widens pulse length at first wall.

Discrete ion spectrum(2)

Continuous ion spectrum(2)

Continuous ion spectrum(3)

Chamber and first wall integrated calculation computed by BUCKY.

Replace two region model with single region model with integrated equation of state and conductivity for plasma and solid state materials.

- Perform DSMC analysis of long mean-free path ions and modify hydrodynamic model.
- Verify and validate BUCKY for new models.
- Continue with improved simulations for HAPL reactor design.
- Continue to interface with wall response simulations and cavity clearing simulations.