The Mercury Laser -Technical Progress Update

Camille Bibeau

National Ignition Facility Directorate Lawrence Livermore National Laboratory Livermore, California 94550

Princeton Plasma Physics Laboratory Princeton, New Jersey October 27-28, 2004

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Outline

- Project Overview
 - Mercury Laser performance goals
 - International 100 J class systems
- Laser architecture
 - Design
- System performance
 - Pump diode arrays
 - Crystalline gain media
 - Gas cooled amplifiers
 - Laser operations
- Upcoming activities
 - Frequency conversion
 - Front end (Andy Bayramian: Poster)
 - Next generation design considerations (Ray Beach: Poster)

Mercury laser requirements are a melding of both NIF and IFE systems but at sub-scales

- Energy: 1.8 MJ
- Pulse shape: 3 ns shaped
- Bandwidth: 90 GHz; 1ω
- Wavelength: 0.35 μm

- Efficiency: 10%
- Reliability: >10⁹ shots
- Cost: \$500/J for laser, \$0.05/W for diodes
- Repetition rate: 5-10 Hz

Mercury Laser incorporates:

Diodes, crystals, and gas cooling

- Energy: 100 J
- Pulse shape: 3 -10 ns
- Bandwidth: 150 GHz; 1ω
- Wavelength: 0.5-0.35 μm
- Efficiency: 10 % (w/o utilities)
- Reliability: >10⁸ diode shots
- Cost: \$5/W for diodes
- Repetition rate: 10 Hz

Many different architectural approaches are being considered for rep-rated 100J systems

Polaris - Germany Dr. Joachim Hein Water cooled, longitudinal pumped Yb:Flurophosphate disk HALNA - Japan Dr. Yasukazu Izawa Water cooled, side pumped Nd:Phosphate slab Lucia - France Dr. Jean-Christophe Chanteloup Water cooled, longitudinal pumped Yb:YAG disk

Summary table of performance goals for high energy 1 μ m DPSSL efforts around the world

Project	Polaris Germany	HALNA Japan	Lucia France	Mercury United States
Application	High energy radiation source	IFE	Laser matter interaction	IFE
Gain Media	Yb:FP glass	Nd:phosphate glass	Yb:YAG and FP glass option	Yb:S-FAP
Energy	150 J	100 J	100 J	100 J
Rep-rate	0.1 Hz	10 Hz	10 Hz	10 Hz
Average Power	15 W	1 kW	1 kW	1 kW
Pulse length	150 fs	10 ns	1-10 ns	3-10 ns
Peak Power	1 PW	10 GW	10 GW	10 GW
Output beam	900 cm²	12 cm ²	10 cm ²	15 cm ²
Optical Efficiency	10 %	20 %	20 %	20 %
Additional capabilities	Configured as a short pulse system	• >100 GHz	 1 ps option 	 Frequency conversion 150 GHz 10 ps option

The Mercury Laser employs several key technologies

80 kW pump diode arrays

4x6 cm² Yb:S-FAP amplifier slabs

Mach 0.1 helium gas cooling

Architecture, optical specifications, and nonlinear propagation are addressed

There are several ways to reduce nonlinear growth of beam modulation

Solutions:

- Relay the location of near- field planes
- Filter fast growing spatial frequencies

- Compact the optics near relay planes
- Minimize source terms through optical specifications

Spatial frequencies convert from phase to amplitude at different propagation distances

When propagating, the highest frequency phase aberrations are the first to appear as amplitude modulation

Optical specifications can drive:

The closely space architecture reduces beam intensity on pinholes and optics

On the basis of the reduced non-linear growth, Mercury was configured with closely spaced slabs

- During laser alignment a diode tile contact failed
- Analysis indicated contact fatigue occurred during installation
- New tooling is being developed
- Image monitoring analysis has been added

There are 23 slabs in fabrication to fully populate the amplifiers and provide 9 spares

Fabrication steps

Ε

Ε

Ε

Ε

Ε

Ε

C C

E

С

E

All three LLNL crystal growth stations are operating

Before upgrade

Eight 6.5 cm diameter boules have been were grown at

Both amplifiers have been deployed with helium gas cooling

Output Energy (J) 3 2 0.0 0.2 0.4

5

4 gain slabs 7 blanks 4 gain slabs 5 gain slabs

- 7 blanks
- 4 gain slabs
- 4 gain slabs

5 gain slabs (in progress)

1.2 1.4

1.0

0.6 0.8

Mercury 8 Slab Campaign Summary

We have completed our thermal modeling of the frequency converter design

We have begun building the frequency conversion modules

YCOB lifetime experiments are being performed to confirm long term operation is possible without degradation in efficiency

PPKTP exhibits photo-degradation:

- color center formation (Ti⁴⁺ reduced to Ti³⁺)
- reduced conversion efficiency

YCOB exhibits no degradation after 6 hours

DKDP is being persued in parallel with YCOB and allows early commissioning of the cooling hardware

Outline

- **Project Overview (We are leveraging off of other DPSSL efforts)**
 - Mercury Laser performance goals
 - International 100 J class systems
- Laser architecture (Architecture incorporates robustness)
 - Design
 - Performance
- System performance (System completed and several 1 hour runs accomplished)
 - Diode arrays
 - Crystalline gain media
 - Gas cooled amplifiers
 - Laser operations
- Upcoming activities and other topics
 - Frequency conversion (Assembly of hardware begun)
 - Front End
 - IRE

Kathy Allen Kathy Alviso Paul Armstrong Earl Ault Monique Banuelos Andy Bayramian Ray Beach Rob Campbell Manny Carrillo Chris Ebbers Barry Freitas Keith Kanz Bob Kent Tony Ladran Dolores Lambert Rod Lanning Zhi Liao Joe Menapace Bill Molander Noel Petersen Greg Rogowski Kathleen Schaffers Ralph Speck Chris Stolz Steve Sutton John Tassano Steve Telford Peter Thelin Everett Utterback

Laboratory for Laser Energetics

CEA (Bordeaux) Northrop-Grumman Onyx Optics Schott Glass Technologies Spectra Physics Quality Thin Films Zygo Photonic Crystals

Coherent Directed Energy