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We are investigating options, issues, and trades 
for DPSSL driver and direct-drive targets

• Motivation: We are working towards an updated laser design as basis for 
systems model and future integrated power plant study

• We are considering trades (e.g., target performance and driver efficiency
for 1ω, 2ω, 3ω and 4ω options

• We are developing design concepts for beam delivery: 
- final optics, phase plate, turning/focusing mirrors
- beam segmentation, number of beams

that meet target requirements: 
- energy, pulse shape, illumination uniformity,
- beam smoothing and zooming

• Next step will be to update laser architecture, and cost scaling
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Mercury is a demonstration of a 1ω laser engine 
that could drive 2ω, 3ω or 4ω beam lines

3ω or 4ω
conversion

module

2ω
conversion

module1ω laser engine

Mercury
LLNL

Mercury is a sub aperture demonstration (100 J1ω) of a DPSSL beam line 
architecture that scales in pulse energy to the multi-kJ level
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Envisioned IFE laser driver design builds on NIF 
architecture

• NIF consists of 192 beams that will generate 1.8 MJ3ω
• Beam line integration architecture is defined by “bays,” “clusters”, 
“bundles”, and “quads”
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IFE baseline DPSSL aperture size is a 
compromise between high efficiency laser and 
high pulse energy aperture  

optimized
efficiency higher aperture

energy
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• Optimized aperture is
13 cm x 20 cm yielding
an output energy of ~3.1 kJ1ω

• 96 chamber ports for laser entry

• ~4.5 MJ1ω total 4π pulse energy 
or ~47 kJ per chamber port

• 4.5 MJ1ω is built up with
1,536 total beam lines
(or 8 x NIF) 

IFE DPSSL will have 16 individual beams per port (4 x NIF) –
the 16 beams (“IFE port bundle”) are the building blocks of a DPSSL driver
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We are investigating the construction of a drive 
pulse using “IFE port bundles” consistent with 
target and chamber requirements 
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• Target considerations: 
• Beam smoothing through speckle averaging is required to eliminate laser imprint
• Dynamic zooming of laser spot is required for efficient utilization of laser energy

• Chamber considerations: 
• Minimization of solid angle dedicated to laser ports is desired to minimize neutron leakage 

and achieve adequate tritium breeding

Proposed 2ω
drive pulse
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Smoothing requirements impose a limit on 
product of target illumination solid angle and 
laser bandwidth

“… low spatial frequency speckle relevant to direct drive is fundamentally determined by the 
product of the optical bandwidth and the illumination solid angle,”   – Josh Rothenberg
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Fraction of solid angle needed for a 300 GHz2ω pulse to 
achieve 0.5% σrms on target between l=0 and the 
maximum l-mode that impacts target stability
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The earliest portion of the pulse, 
the picket, requires the largest 
solid angle to achieve smoothing 
(~1% of 4π)
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Because the target is most susceptible to laser imprint and 
subsequent instabilities early in the pulse, the picket 
requires the largest area in each port bundle for smoothing

Single aperture at 20 m from target

• Each of the 16 aperture sources ~2.6 kJ2ω
• Picket aperture is 72 cm x 72 cm

∆Ω/4π = 0.99%
• All other apertures are 10.3 cm x 10.3 cm

∆Ω/4π = 0.3%
• Total solid angle dedicated to ports is 
1.3%:
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• 10.3 cm beam aperture is consistent with 20 m standoff of final optic, 5 TDL 
beam, and ~4.8 mm target size 

• Spot size at target with 5 TDL beam:
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Pulse construction from port bundle using only 
rectangular in time pulses

• Picket pulse overlaid with pulse constructed from 16 independently zoomed 
and overlapped beams (1 Picket,1 Foot, 2 Ramp, and 12 Main)
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• All 12 beams in Main are 4.3 nsec or longer in duration
with optical-optical conversion efficiency ~ 0.28 (diode pump light to 1ω)

• Harmonic generation issues are mitigated with rectangular in time pulses
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Beam line point design assumes a 13 cm x 20 cm Yb:S-
FAP crystal aperture and B-integral limited extraction
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Duration Component

• Due to B-integral limited extraction, shorter duration 
components are necessarily generated at lower efficiency 

• Pulse-averaged optical-optical efficiency (1ω) = 0.25
• Each beam is assumed to have 150 GHz of bandwidth @ 1 ω
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Harmonic conversion efficiency

• 1ω irradiance is 3.3 GW/cm2

• 2ω irradiance is 1.7 GW/cm2

• 3ω irradiance is 1.1 GW/cm2

• 4ω irradiance is 0.8 GW/cm2

1ω ⇒ 4ω

1ω ⇒ 3ω

1ω ⇒ 2ω

Process

75 GHz

100 GHz

150 GHz

1 ω
Bandwidth

0.200.8

0.200.8

0.230.9

diode⇒ωfinal
Efficiency

Efficiency
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Independent zooming enables 88% of total pulse energy 
delivered to chamber to intercept target within critical 
radius
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• Energy 
delivered to 
chamber

• Energy 
delivered 
within target 
critical radius

• Total Pulse Energy = 4.02 MJ
• With zooming as shown, 3.55 MJ falls within time resolved critical radius

- 88% of pulse energy
• Without zooming, only 2.52 MJ falls within time resolved critical radius

- 63% of pulse energy

HH LL
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Final optics scheme for port bundle – louvered GIM 
design

Mirrors for
72 cm x 72 cm 
picket pulse GIMs for 15 pulse 

components that are 
after the picket
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• Small GIMs for 10.3 cm x 10.3 cm beams need to be 135 cm 
in length (θinc=85.6o) to limit absorbed fluence to 10 mJ/cm2 

- for S-polarized green light

• Single GIM for the large area picket portion of the pulse
(72 cm x 72 cm) would require a 9.45 m long optic

• Two mirrors as small as 1.02 m long can be used to replace 
the single large picket GIM (as shown above)H L
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Summary

• Based on a “NIF-like” architecture, we are proposing “chamber 
bundles” as the basic building block of an IFE DPSSL driver

• Chamber bundles permit both zooming and smoothing to meet 
target  and chamber requirements

• Concept is applicable to 1ω laser engine with 2ω, 3ω or 4ω
harmonic conversion option

• We have developed a final optics concept that uses meter size  
GIMs

• The next step will be to update laser architecture, and cost 
scaling models
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