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Outline

• Update on target-layering efforts

• Target-heating issues

– response of an OMEGA target to ambient radiation
(experiment and model)

– demonstrate a Monte Carlo model used to estimate
gas dynamic loads on an IFE target

- to define parameter space for experiments

– planned experiments
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We quantified the accuracy and repeatability
of the ice layering and measurement process

We have determined:

• the accuracy threshold of shadowgraphy (CTHS system)

– ~0.3 µm—value obtained for a “near perfectly smooth” reference

• the repeatability of the ice-roughness measurement process
(7 repeats of a single view)

– ±0.11 µm (95% confidence limit)

– variables: target vibration, focusing, internal ice defects

• the repeatability of the ice-layering process (6 repeats)

– constant solidification rate (controlled Qin, Qout and ∆Temp)

– ±0.5 µm (smoothest region <2 µm); 0.7 µm (roughest region ~4 µm)

• the ice roughness distribution in the capsule is repeatable
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Submicron rms ice layers were demonstrated; the smoothest
layers were confined to a localized region of the target

•  0.8-µm rms layer—best demonstrated
•  0.8 to 1.4 µm over 1/4 of target’s surface
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Target ID: cryo-2035-294
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The variation in the ice roughness is repeatable AND
correlates with the hole in the layering sphere

Hole where the target
is inserted into the
isothermal integrating sphere.

Polar plot: great circle rms
roughness versus φ

Target ID: cryo-2035-291

Average of three separate layers.
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The primary source of the azimuthal roughness variation
appears to be the illumination nonuniformity

• Layering D2 ice requires uniform IR radiation – integrating sphere.

• The largest source of nonuniformity is the “hole”
used to insert and remove the target.

• The effect of the “shadow” on the ice thickness is quantified
using ray tracing and a thermal model.

Concerns: – It causes an initial variation
in the ice layer thickness.

– The target relayers as it is rotated
(to acquire 3-D information).



T1908

The lack of illumination from the “hole” causes a mostly
uniform 2% decrease in volumetric heating

The focusing effect of the ice and internal reflection from
the interior ice surface are responsible for this behavior.

E
n

er
g

y 
d

ep
o

si
te

d
(a

rb
it

ra
ry

 u
n

it
s)

Radius of target (µm)

θ (degrees)

497

3970

180

Ice

In
co

m
in

g
 r

ay
s

Fewer rays traverse this volume;
Q decreases only 1%.

More rays traverse these regions;
Q decreases 3 to 4%.



T1909

The nonuniform heat load creates
an ice rms roughness of ~4 µm

Ice layer thickness adjusted
to create an “isothermal” inner layer Resulting power spectrum
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The geometry of the layering sphere/viewing system
allows a varying fraction of the perturbed region
to be viewed, depending upon the target rotation

Viewing
axis

Rotation Rotation

Great circle
with greatest
roughness
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with lowest
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Viewing
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Target smoothness deteriorated at temperatures
more than 1 K below the triple point

• Higher heat loads AND slower cooling rates produced
smoother layers 1.7 K below the triple point.
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Increased roughness at lower ice temperatures
is primarily observed in modes 1 and 2
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Effect of ambient radiation on OMEGA targets

• Target exposure to room temperature depends upon
the shroud retraction time (0.05 s to 0.25 s).

– Gas heats at 5 K/s.

• The measured time for the target to burst equals 45 s.

– Pburst ~ 12 atm → Ttarget ~ 38K

• How rapidly does the melt zone propagate?

Fraction melted after 1 s Temperature after 1 s
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New task—IFE-relevant work: estimate the thermal load
on a target injected into an IFE chamber

Issues:

1. What is the heat load to the target?

– First step: Monte Carlo calculation of the gas dynamics

- determine atom flux and temperature ranges

- effect of sticking probability and accommodation coefficient

- attempt to measure these values

2. How does the ice layer respond to this heat load?

– CFD model

– planar cryo target experiment

An IFE-scale capsule can be fielded in the LLE target
chamber to measure the time to melt/slump.
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IFE has assumed the highest (most conservative) gas-to-
target heat load. A lower value may simplify target fabrication

• Assumption: Xe at 1300 K is fully absorbed onto the 18-K surface.

– Brown et al., 100% adsorption for N2, CO2, and Ar when
Tsurface < 25 K and Tgas < 1400 K

– Baglin et al., ~1% adsorption for H2, CH4, CO, and CO2
when Tsurface < 15 K

• Lower adsorption → lower heat load, AND, what if the accommodation
coefficient is also <1, an even lower heat load?

• An insulating outer foam layer would protect the target, but this
may not be needed. We need experimental data.



Monte Carlo calculations are used to quantify the effect
of gas adsorption and the high thermal accommodation
of Xe on the target surface
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Experimental design requires parameter limits
that are obtained from calculations

Goal:

1. Generate a molecular beam of hot Xe atoms

2. How does a cryogenic target respond to the flux?

Status:

1. Scale the problem correctly—currently

2. Engineering design
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Equipment concept and expected performance

Currently: (a) Monte Carlo calculation to confirm molecular beam
estimates (downstream of nozzle).

(b) heat load calculation
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Summary

1. High-quality ice layers have been demonstrated

2. Potential cause of roughness variation in a target identified—
engineering solution planned

3. Ice becomes rougher only > 1 K below the triple point—primarily
low modes (1, 2, and 3), may be mitigated by a slow cooling
rate (0.5 mK/min)—need more statistics

4. Designing a molecular beam nozzle to measure IFE-scaled
gas-heating loads on cryogenic targets




