Laser IFE Systems Modeling Progress Report

Wayne Meier LLNL

HAPL Meeting Sept. 24-25, 2003 Madison, Wisconsin

Work performed under the auspices of the U. S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48

Activities since July 11 e-meeting

New results from UW confirm wall radius scaling previously presented

Systems code is being developed in Mathcad - example pages shown

iseri r <u>o</u> rniac <u>i</u>	оор эндерном танаом Дер Асобенск		
🗟 Mathcad Pro	ofessional - [LIPPS0918.mcd]		
🧿 File Edit '	View Insert Format Math Symbolics \	Window Help	
🗋 👻 🖨 📔	🗳 🖪 💖 X 🖻 🛍 🗠 🗠 🏴 🗄 / M	100% 🔽 💭 🕈	
Normal	Arial	▼ 10 ▼ B <i>I</i> <u>U</u> ≣ Ξ Ξ	I ≣ j ≣

Laser IFE Power Plant Systems Code

Target Gain

Target gain increases with increasing driver energy. The form of this fit follows published gain curves for direct drive targets. The constants are selected to give a gain equal to the average of Perkins' 1D gain (170 at 2.4 MJ) and unoptimized 2D gain (110 at 3.1 MJ) as of 12/02. Want G = 140 at 2.75 MJ. This will be updated soon with new curves from Perkins and eventually for 1/3 and 1/4 mircon options.

 $G(E) := 69.0 + 70.2 \ln(E)$ G(2.75) = 140.014

Eg := 0.5, 0.6..5

Y(E) := G(E) ·E Examples for 154, 300 and 400 MJ yields Y(1.546) = 154.0 Y(2.335) = 300.1 Y(2.821) = 400.0 Eo := 1.546 Fusion Power, MW, as a funcion of chamber rep-rate, RR in Hz

 $Pf(E,RR) := Y(E) \cdot RR$

_ D - 🗳 🔒 🖉) 🖪 🖤 X 🖻 f	v a T	· - <i>f</i> ø 🗊 =	I 🗞 🥸	100%	- 80 4	?
Normal	_	Arial		▼ 10	- E	3 <i>I</i> U	- 📰 🖹 🗄
Chamber Des	gn Constraints						
Peak temperati	ure in W armor = f	unction of ch	amber radius, t	target yield	l, and cha	mber pre	essure
Reference poin This is a fit to B on top of a bas	ເW temperature r lanchard points_a e of about 500C. (ise per pulse t 6.5 m: ∆T = Ref. Blancar	e (for Yo = 154 = 2600, 2040, 1 d, Dec 2002 H	MJ, Rwo = 570 C at p APL talk)	6.5m) 5 = 0, 10,	and 20 r	ntorr
ΔTo(p) := 2600	$-560 \cdot \left(\frac{p}{10}\right)^{0.88}$	p is cha	mber pressure	in mtorr			
Twss := 500	Quasi steady: coolant tempe	state VV temp rature based	berture, C (may I on Raffray bla	want to m	ake this a m)	function	of
W armor peak t	emperature						
Tw(E,Rw,p) ∷=	$\left[\Delta T \circ (p) \cdot \frac{Y(E)}{154} \cdot \left(\right. \right. \right.$	$\left(\frac{6.5}{\text{Rw}}\right)^{2.5+0.02}$	+ Twss				+
The temperture and inversely w pressure (empr	rise on each puls th heat load pulse ical fit to Blancaha	e scales with width which ard results).	the target yiel goes as (1/Rw	d, inversely /^0.5) but r	/ with wall nodified t	area (1/ by chamb	Rw^2) ber
Set a maximum Twmax := 2400	allowed W armoi	temperature	e (C) and then s	solve for th	e minimu	m wall ra	dius (m).
Solve for the mi	nimum wall radius	s (m)					
Rwgv := 5	guess value						
Rwmin(E,p) :=	root(Twmax – Tw(E,Rwgv,p),I	Rwgv				
For 154 a	nd 400 MJ vield [.]						
Rumin (Fr	10) = 6.673	Rumin(2.8	21 10) - 9 504				

Minimum chamber radius vs target yield and chamber pressure for $T_{Wmax} = 2400 \text{ C}$

Model for target heating during chamber transit has been added

 $ttarmax(vinj,T,p) := 0.035775 \cdot \left| 0.8 \cdot \left(\frac{2}{HR(vinj,T,p)} \right)^{0.8} + 0.2 \right|$

• Based on Raffray's Excel model for foam insulated target

• Heat rate (W/cm²) is function of injection velocity, temperature and pressure of Xe gas

• Allowable transit time is calculated as function of these same parameters.

$$V_{inj} = 400 \text{ m/s}, T_{Xe} = 6000 \text{ K}$$

- For 154 MJ target, chamber is small enough that transit time at 400 m/s in less than allowable heating time.
- For 400 MJ target, transit time at 400 m/s exceeds allowable heating time for $P_{Xe} > 11$ mtorr.
- Allowable time increases with decreasing Xe temperature, relieving this constraint (e.g., $P_{Xe} < 20$ mtorr at $T_{Xe} = 4000$ K)

Many design aspects can be explored – e.g., required injection velocity for target survival

Although higher Xe pressure gives a smaller chamber, shorter allowable heating time demands higher target injection velocity.

Example of multiple constraints – W armor max temp and target heating in chamber

Next steps

- Continue work on incorporating FW/blanket design info
 - For thick W armor, steel temp based more on steady conditions (power flow) than pulse effects (yield)
 - Add thermal stress constraint
 - Need to calculate pulsed stress due to isochoric heating of Li in coolant channel and determine if it is a problem
 - Add conversion efficiency scaling (dependence on radius, power, coolant parameters). Eventually optimization will pick radius to minimize COE subject to constraints.
- Other target injection constraints (e.g., What fraction of inter-pulse time is useable, perhaps to allow settling of turbulence, cooling of gas?)
- Update gain curve based on Perkin's work