The Mercury Laser Facility (before and after)

May 31, 2003

September 20, 2003

Presented by: Camille Bibeau

HAPL Program Review September 24 & 25 Wisconsin University Madison, Wisconsin

Management:	C. Bibeau, S. Payne
Crystal Growth:	J. Dawson, K. Schaffers, J. Tassano
Mech. Engineering:	W. Davis, B. Freitas, B. Kent, K. Klavuhn, J. Lang, S. Mills,
Laser System:	P. Armstrong, A. Bayramian, R. Beach R. Campbell, C. Ebbers, K. Kanz
Laser Diodes:	L. DiMercurio, K. Hood, D. Van Lue
System Controls:	R. Lanning, S. Telford, E. Utterback

The system was operated with one amplifier to qualify subcomponents before building a two amplifier system

With the use of phase corrector plates, Mercury was operated at up to 34 J single shot, and 114 W average power at 5 Hz

40

35

Energetics

Operations experience with the first amplifier has lead us to the following upgrades:

Front end

- Improved reliability

Reverser

- Elimination of non-essential optics

Pump delivery

- Improved pump uniformity

Amplifier head

- Accessibility of amplifier slabs without affecting alignment

Diode arrays

- Optical imaging and electronic feedback for diode monitoring Controls and Diagnostics

- Faster response time and information to operator

Cleanliness

- New class 1000 enclosures in beam paths

Crystal Growth

- First full slab fabricated

The second amplifier head has been built and the full 1⁽¹⁾ laser system is being commissioned

The 2-amplifier system will enable 100 J operation

The 2-amplifier system will enable 100 J operation

The front end has been reconfigured to allow for pulse shaping, parasitic suppression, and oscillator stability

Before

- Angular multiplexing for parasitic suppression
- Pulse slicer added for pulse length variability
- Energy increased to 0.9 J (before 0.5 J)

After

Amplifier

The reverser is now configured to full beam size, places critical optics under vacuum, and has better accessibility

• Reverser mirrors:

- Qualified for 40 J/cm²
- (Exploring 70 J/cm² mirrors from France)
- Expected peak fluence is 25-40 J/cm²
- Adjustability has been added
- 3 windows have been eliminated
- Full scale eliminates beam overlap
- Full size Pockles cell

The 100 W Pockels cell developed for parasitic suppression in Mercury was awarded an R&D 100 Award

News clip:

High-Average-Power Electro-Optic Q Switch will allow fast optical switching of high-average power lasers for machining, energy research, and national defense applications. The Q switch offers a ten-fold increase in the average power handling capability for lasers to 300 watts instead of only 30 watts. Members of the award-winning team ... are: Christopher Ebbers, Vernon Kanz, and Hitoshi Nakano (Kinki University, Japan)

The new diode array hardware has been operated

- Tip-tilt adjustment
- Smaller footprint
- Vibration isolation from the table
- Nitrogen purge relocated to eliminate condensation
- Strain relief on cables

The new pump delivery system allows for better pump uniformity

- Closer proximity to amplifier
- X, y, z, tip, tilt
- Higher optical quality components
- Bellows on lenses for collimation

We have benchmarked the data to confirm ray trace codes

After

Integrated pump profile

The new amplifier assembly will improve operations and beam quality

Window cassette

Before

- Amplifier cassette is easily removable
- Laser and diode
 light remain aligned
- Windows located in an independently sealed cassette

The new amplifier assembly was tested to verify adequate gas flow conditions between channels

Channels

FEMLAB is now being used to model the optical wavefront distortions in Mercury

We can now operate at rep-rate without overheating the polymer

- 100 nm Nickel adhesion
- 100 nm Gold oxidation
- 15 μm Indium solder

We are currently testing all new components for functionality

We have reconfigured the Mercury controls and diagnostics

The control panels to the system have been upgraded to allow for 8 diode array operation

- PXI controllers added
 - parallel communication
- Timing hardware (12 DG 535's) replaced with FPGA
 - simplification
 - flexibility
 - reliability
 - reduce timing jitter
- User interface improved
 - faster and comprehensive system monitoring

The previous serial communication methods had slow response time and error checking

Before

The new system allow for faster communication and more detailed information to be communicated to the operator

After

Some tiles were damaged on backplanes 3 and 4 from a 1 μm parasitic

Improvements to the system include:

- Daily electrical monitoring of the IV curve
- Optical imaging on all eight backplanes to detect power level drop
- Dichroic optics to reduce laser intensity on arrays by 1e-6

The diagnostics network was upgraded to add second amplifier components

Model assumes: 750 usec diode pulse length, 120 W/bar 1.3 x 10¹⁹ cm⁻³ doping

We have fully populated one amplifier with 7 slabs and are working toward completing the second head

The Magnetorheological Finishing (MRF) machine at LLNL is being used on S-FAP samples

0.104 λ

• A polishing process dominated by shear loading

Capabilities:

- Minimum 1 mm feature size
- Fast turn around hours for (10 cm² parts)
- Depth > 10 mm
- Gradient capabilities > 400 nm/mm

It appears that we may be able to polish out the bond distortion

Ο λ

After

Grow 6.5 cm crystal

Final polish

- Some boules are large enough to harvest full size slabs (no bonding)
- Currently developing processes to cut, grind and polish large boules
- High thermal gradients required to reduce defects (cracking more prevalent)

The 5 Year Plan for DPSSL Development (Where are we?)

CY 2001

CY 2002

CY 2003 📗 CY 2004

CY 2005

We have designed a front-end laser that offers the attributes needed for full Mercury

- Present system is a commercial unit, on-loan for temporary use
- New system is designed to spectrally, temporally, and spatially tailor the pulses to meet our IFE goals

Basic layout (see poster for details)

Univ. Rochester

Large-Flattened Mode Fiber (2.5X intensity) Gain flattening with intra-cavity etalon