Front end design for the full Mercury laser system

Front End laboratory showing installation of fiber components

A. Bayramian, R. Beach, C. Bibeau, C. Ebbers, J. Dawson, S. Payne

HAPL Review University of Wisconsin, Madison September 24, 2003

Primary mission requirements:

- 1. Spectral bandwidth beam smoothing by spectral dispersion (dithering of speckle pattern on target surface decreases imprinting and Rayleigh Taylor instabilities)
- 2. Temporal pulse shaping necessary to avoid preheating target, compressing along proper adiabat, and optimizing fusion gain

Laser specification

- 10 Hz pulse repetition frequency
- 500 mJ output energy
- < 5% temporal amplitude fluctuations</p>
- < 250 ps temporal jitter
- Beam quality: M² < 1.1
- 10,000:1 contrast ratio between main 1047 nm signal and noise
- 20:1 temporal contrast to limit square pulse distortion
- 100:1 spectral contrast

The Mercury front end is designed to provide broad bandwidth and temporal sculpting of DPSSL pulses necessary for target physics

The oscillator, temporal, and spectral shaper for the Mercury front end relies heavily on fiber technology for stability

A compact spectral sculptor using a liquid-crystal modulator light valve has been demonstrated

sculpting for narrow-band amplification of broadband frequency modulated pulses, Opt. Lett., 27(16), 1427-1429, 2002.

Block diagram of fiber amplifier section for Mercury laser

Linear and nonlinear losses are managed with proper design

• At full output, the B-integral is 0.3 => Self phase modulation of the spectrally sculpted pulse is negligible for all amplifiers.

• Operation point is less than the Stimulated Brillouin and Stimulated Raman scattering threshold for all amplifiers

The final stage of the fiber amplifier employs a LLNL custom designed large flattened mode (LFM) fiber which is capable of amplifying pulses to higher peak powers than standard fiber

The LFM profile yields a larger lower intensity supergaussian mode

Yb:S-FAP multipass power amplifier layout

Features:

- Use of Mercury diodes and S-FAP gain media
- Rectangular amplifier rod geometry matches the aspect ratio of the Mercury extraction beam
- Simple relay-imaged multipass amplifier eliminates mode-matching and stability problems associated with a regenerative amplifier

Modeling indicates the S-FAP multipass power amplifier will meet requirements, and utilizes the knowledge base from existing system

Energetics Parameters:

- 2 S-FAP crystals
- 7x4.2x20 mm
- 1.46 J extractable stored energy
- 2% of thermal fracture
- Gain = 33 (round trip)
- Number of roundtrips = 4
- Average Fluence ~ 3 J/cm² (= F_{sat})
- Input: 30 µJ, Output: > 500 mJ

Required input pulse for the Mercury laser (spikes due to sculpting of RF bandwidth)

• A front end has been designed capable of meeting Mercury requirements which makes use of the stability inherent in fiber based laser systems as well as the use of S-FAP gain media and diodes already being fabricated for the Mercury laser

- The fiber based sculpting section is currently being assembled and tested
- Fiber amplifier components will be purchased and assembled during CY2004
- S-FAP multipass amplifier engineering and construction will begin in CY2003

If the RF spectrum is not sculpted spectrally, gain narrowing will lead to temporal amplitude modulation in the output pulse

We have designed a front-end laser that offers the attributes needed for full Mercury

- Present system is a commercial unit, borrowed for temporary use
- New system is designed to spectrally, temporally, and spatially tailor the pulses to meet our IFE goals

