XAPPER Progress on the First Wall Battle Plan

Presented by: Jeff Latkowski XAPPER Team: Ryan Abbott, Wilburt Davis, Steve Payne, Susana Reyes, Joel Speth

July 11, 2003

XAPPER is up and running again

- □ Machine came back up June 12
- \Box ~10⁶ pulses in past month
- Completed numerous photodiode, filtering, calorimeter, and exposure runs
- Analyzed and opted to reverse the optic:
 - Only collect $\sim \frac{1}{4}$ as much light
 - Demagnify vs. magnify the image
 - Less sensitive to optical imperfections, which are what is causing our problem

XAPPER is up and running again, (Cont'd.)

Ta pinhole

Before

After

- □ In the reversed configuration, we do seem to have a higher fluence:
 - Observe scaring on tantalum pinholes
 - Observe smaller damage spot on exposed samples
- □ With a (considerably?) higher fluence we are having trouble measuring it:
 - Photodiode is clearly saturated
 - Destroyed Si₃N₄ filter quite easily
 - Ordered set of polyimide filters (10, 100, 1000×) from Luxel

 \Box At the moment, we can only bracket the fluence:

- Ray tracing calculations predict fluence increase of 3-6× (from 0.18 J/cm² in the original configuration)
- Damage to Ta pinholes didn't occur with optic in original configuration, and thus, we have $\phi > 0.18 \text{ J/cm}^2$
- Transient heat transfer calculations suggest tungsten will melt at $\sim 1 \text{ J/cm}^2$, so we must be lower than that
- □ Evidence suggests we are in the 0.5-0.9 J/cm² range
- Plans:
 - Filtering, if they can survive even the unfocused beam
 - Use a variety of target materials to empirically determine fluence

Tungsten foam exposures

- Tungsten foam samples provided by Ultramet thanks to Shahram Sharafat:
 - 11% dense
 - 45 pores per inch
 - Nominally $1 \times 1 \times 0.5$ cm
- Baked out according to Snead guidance
- Samples hit with maximum fluence (see previous page) for 20,000 pulses at 10 Hz; started at room temperature
- Unable to perform any type of surface analysis; only optical microscopy
- □ No noticeable change to the material
- □ Same result for Re (10,000 pulses)
- □ Ideas for other analyses?

JFL-7/11/03 HAPL

- □ Powder met. tungsten samples provided by Lance Snead:
 - 99.95% purity
 - 3 mm diameter samples; 100 μm thick
- Acetone/ethanol ultrasonic baths & baked out according to Snead guidance
- □ Samples hit with maximum fluence (see slide #4) at 10 Hz; started at room temperature

Powder met. tungsten exposures, (Cont'd.)

- □ Three separate samples: control (0 pulses), 10K pulses, 79.5K pulses
- □ White-light interferometer used post-irradiation
- □ Contour plots show innermost 1.5 mm of each sample (edges appear to show effects of punching disks)

Spikes (10-20 μm diameter, 0.3-0.4 μm high)

Don't appear on control or 10K samples

Are these real?

Were they caused by x-rays?

□ Larger samples – Lance?

□ Procedure:

- Ultrasonic baths
- Mount samples to sturdy (Ta?) disks
- Bake out samples
- White-light interferometer for baseline
- Bake out again?
- X-ray exposures: 0, 10K, 100K pulses @ 10 Hz & max. fluence
- White-light interferometer; subtract off baseline
- Consider Tina Tanaka's ion cross-section imaging technique?

□ Comments and/or suggestions?

JFL-7/11/03 HAPL

Additional plans

□ Accurate fluence measurements:

- Filtering
- Fast photodiode backup
- Calorimeter confirmation

Get to even higher fluence with new condensing optic

Implementation of UCSD's thermometer – parts now being ordered

□ Sample heating under investigation