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High-resolution integrated 2-dimensional simulations of pellet
implosions with a shock-induced “tailored adiabat” predict high gains
(~160) despite “realistic” target and laser imperfections.

Work by NRL laser fusion team with contributions from LLNL and LLE.



Pellet design affects many laser-fusion systems
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Inertial fusion with laser illuminated deuterium-tritium

(DT) fueled pellets
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imploding fuel to velocities of
[A00 km/sec
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The primary physics concern for direct-drive laser fusion is
hydrodynamic instability

NRL

* High-resolution 2D simulation of NIF pellet implosion.
» Gain degraded from ~ 35 to 17 by Instability seeded by laser & target
imperfections

2740n2003.015 t= 7.50nsec

27Jan20Q3_01:; t= 8.50nsec 27Jan2003_01:; t= 8.90nsec

1000

-1000

—1000 =500

500 1000

o0 a 200 8]
K (uM) K (uM)

o
# {uM)

27Jan2003_01:; t= 9.05nsec; 0.0OZBEM.) 27Jan2003_01:; 1= B.1Bnsec; 0.312MJ 27Jan2003_01:; t= 9.27nsec; 20.2MJ




Big problems require large computers
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“Self-built” 256-processor supercomputer cluster “NOX”
(Listed as one of the world’s Top100 supercomputers)



LLE is performing direct-drive
layered cryogenic Dj target experiments
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LLE’s target physics research program
combines all aspects of direct-drive ICF
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Planar target experiment to investigate hydrodynamic instability
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Experimental results show a thin high-Z outer layer (120-nm Pd)
substantially reduces the effects of laser non-uniformity. e

Decrease in imprint by Pd layer is larger than the effect
of increasing number of laser beams from 1 to 39
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X-rays from the high-Z layer creates a large plasma at early time that
- » smoothes laser nonuniformity during the low intensity foot m

Thin high Z layer Effect of Au layer on plasma

High laser intensity
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(
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High-Z layers are now used in
pellet designs: early time
indirect drive
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One-dimensional calculations indicate we can obtain gains >100

with high-Z coated targets
aNT=TI

Thin (300-1800 A) 1D implosion using NRL FAST code

High Z coating
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High-gains can be traded for increased stability by using a larger

amplitude “foot” pulse that increases the shock heating
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A spiked prepulse can be used for both imprint mitigation
and adiabat control
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Spike repulse drives a decaying shock through the pellet
1. The rarefaction behind produces a stabilizing density gradient on the outside of the pellet

2. The spike preferentially preheats the ablator “tailored adiabat”

Application to pellet design is being explored by LLE, LLNL & NRL



High Gain KrF pellet with stabilizing “spike”
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Use of laser pulses with a single picket ahead of the main pulse may

allow increased stability (calculations by J. Perkins, LLNL) e
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High-resolution integrated 2-D simulations give gain of 160 with laser
and outer surface nonuniformity
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imaaes of densitv at six different times durina the implosion

* Nonuniformity amplitudes during intial shock transit calculated from single mode studies
* Multimode-calculation of shell acceleration, stagnation and burn



Gain still high (160) with addition of inner surface nonuniformib
NRL

Inner (Lum rms) & Outer (0.125um rms) & ISI (1Thz) perturbations included
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Latest high gain designs are robust per the 2-D simulations
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* May be able to accommodate reduced inner and outer pellet surface quality
* May be able to relax laser parameters (uniformity & energy)

« Work in progress: parametric studies & 3-D effects.



