

Stanley Skupsky University of Rochester Laboratory for Laser Energetics High Average Power Laser Program Workshop NRL 5–6 December 2002

Contributors

R. Betti T. J. B. Collins V. N. Goncharov D. R. Harding P. W. McKenty S. Skupsky Summary

Direct-drive IFE target designs can have gains approaching 300

- wetted foam for enhanced laser absorption and
- an intensity picket for adiabat shaping and imprint reduction.
- The target design concepts can be tested with experiments on the OMEGA laser

High-gain target designs combine wetted foam with adiabat shaping

Moderate-Z material increases laser absorption without significant radiation preheat. 400 CH(DT)₂₀ 5 MJ Power (TW DT 300 200 3.1 mm 100 Ο 10 20 30 Λ Time (ps) Intensity spike reduces imprint and shapes adiabat.

Target gains of ~300 are possible for direct-drive IFE designs using wetted foam and adiabat shaping

LLE

NIF

Wetted-foam targets have higher laser absorption than DT, allowing more fuel and higher gain

Foams have been used previously to selectively radiatively preheat the ablator.¹

- The foam also protects the fuel from preheat due to radiation from the CH.
- A lower-gain (G = 80), more-stable target with $CH(DT)_4$ foam has also been designed.

A "picket" prepulse provides increased stability

- A high-intensity picket results in a decaying shock.
- This results in an adiabat that decreases throughout the shell, stabilizing the outer surface without preheating the fuel.

Growth Factors

2-D linear growth-factor calculations show only moderate growth of nonuniformities

OMEGA

Stabilizing effects of adiabat shaping can be tested on the "all-DT," α = 3 OMEGA target design

LLE Two pulse shapes were considered 10 Power (TW) **DT** ice **85** μ**m** 1 -430 µm-1.0 1.5 2.0 0.0 0.5 2.5 Time (ns) 10 8 V_a (µm/ns) Shaped adiabat 6 4 2 0 25 50 175 75 125 200 0 150 100 **Distance traveled** (µm)

Enhanced stability during acceleration is predicted for the picket design

- 1-THz, 2-D SSD, 80-nm outer surface roughness, 1 μ m inner ice roughnes
- The bubble amplitude is calculated using the stability postprocessor.¹

¹V. N. Goncharov *et al.*, Phys. Plasmas <u>7</u>, 5118 (2000).

OMEGA

Mode decomposition shows the effect of the picket on the laser imprint amplitudes¹ and RT growth rates

¹T. J. B. Collins and S. Skupsky, Phys. Plasmas <u>9</u>, 275 (2002).

Wetted-foam experiments on OMEGA could produce $30 \times$ the neutron yield as all-DT experiments due to increased laser absorption

OMEGA Designs (α = 3)

	All DT Wetted foar		
Neutron yield	1.1 \times 10 ¹⁴ 3.6 \times 10 ¹⁵		
Gain	0.01 0.3		
Absorption (%)	40	73	
Peak ρR (g/cm ²)	0.25 0.57		
Adiabat (α)	3	2.5	
Shell velocity (cm/s)	3.7 × 10 ⁷	4.7 × 10 ⁷	

High gain for IFE requires the shift to low implosion velocities and reduced fuel adiabats

	1.5 MJ		5 MJ	
Gain	100	137	170	270
V (× 10 ⁷ cm/s)	4	3	3	2.4
ρ R (g/cm²)	2	2	3	3
Adiabat (α)	2	1.5	1.5	1.3
Absorption	92 %	87 %	88%	90%
Bubble/thickness	0.6	0.2	0.1	0.05

Summary/Conclusions

Direct-drive IFE target designs can have gains approaching 300

- wetted foam for enhanced laser absorption and
- an intensity picket for adiabat shaping and imprint reduction.
- The target design concepts can be tested with experiments on the OMEGA laser