

- Performance for low-adiabat ($\alpha \sim 4$) cryogenic D₂ implosions is very close to 2-D *DRACO* predictions.
- Layering and characterization of cryogenic D₂ capsules are now routine; layer quality can be preserved well below the triple point.
- Adiabat shaping significantly improves target performance in warm, cryo surrogate CH capsule implosions.
- Deuterium re-shock experiments on OMEGA exhibit compressibility that agrees with the Saumon-Chabrier model.
- Fuel assembly experiments with fast-ignition targets are underway on OMEGA.
- Work is underway to reduce the laser illumination nonuniformitities to \leqslant 1% rms.

T. C. Sangster University of Rochester Laboratory for Laser Energetics High Average Power Laser Program Workshop Naval Research Laboratory 5 – 6 December 2002

OMEGA cryogenic targets are energy scaled from the NIF direct-drive point design

A stability analysis* of the α = 4 design defines the ignitionscaling performance window for cryogenic implosions

The NIF gain* and OMEGA yield can be related by

$$\overline{\sigma}^2 = 0.06 \ \sigma_{\ell < 10}^2 + \sigma_{\ell \ge 10}^2$$
,

where the σ_{ℓ} 's are the rms amplitudes at the end of the acceleration phase.

The life cycle of a cryogenic target is an engineering tour de force

LLE

E12062

The Cryogenic Target Fabrication Group routinely delivers well-layered and fully characterized capsules

Cryogenic implosions to date (July 01 to October 02):

- 1-ns square (16 shots)
- α~4 (9 shots)

```
26
```

α~4 with picket (December/January)

Deliberate TCC offsets have a significant impact on implosion performance using D₂-filled CH capsules

Warm surrogate implosions showed that a systematic offset from TCC would likely explain the cryogenic implosion performance.

Individual cryo ρ R measurements show the expected correlation with angle relative to the capsule offset

Density contours at peak burn from 2-D DRACO for a capsule offset by 50 μ m with 1- μ m-rms ice

This "geometric" analysis gives us confidence that we can accurately measure the capsule offset and understand the resulting performance.

A comparison of shots 28900 and 26477 clearly shows the result of accurate TCC alignment (with α ~ 25)

UR :

Shot 28900	Drive pu	se: 1 ns (α ~ 25)	Shot 26477	
Experiment	al	Clean 1-D (%)	Experimental	Clean 1-D (%)
Yield (1n):	$\textbf{1.27}\times\textbf{10^{11}}$	96	$3.17 imes 10^{10}$	31
Yield (2n):	$1.17 imes10^9$	84	$3.05 imes \mathbf{10^8}$	32
Yield (2p):	$2.03 imes \mathbf{10^8}$	112	$2.67 imes \mathbf{10^7}$	21
<ρ R >:	61 mg/cm ²	133	30 mg/cm ²	80
T _{ion} :	3.6 keV	157	2.6 keV	117
Y _{2n} /Y _{1n} :	0.0092	85	0.0096	102
Y _{2p} /Y _{1n} :	0.0016	114	0.00084	66
TCC offset:	14±7 μ m		85 μ m	

2-D DRACO accurately predicts the cold fuel areal density in shot 28900 ($\alpha \sim$ 25)

2-D DRACO predicts 9% of the 1-D yield for shot 28969 $(\alpha \sim 4)$ while the experimental measurement is 11%

Scaled ignition performance with cryogenic implosions on OMEGA is within reach

Improved ice-layer quality: 1 μ m rms

- Feedback on IR power delivered to the layering sphere
- Blast damage to layering sphere
- Vibration mitigation
- MCTC reliability (4× carts)

Improved laser system uniformity: <1% rms

- Target alignment to <10 μ m (1% diam)
- Beam pointing
- Power balance
- Beam shape (new DPP's, summer '03)

New diagnostics:

- Stepped wedged range filters (MIT): 4- to 18-MeV proton spectroscopy to measure ρR up to ~250 mg/cm^2
- HSRHOR (LLNL): absolute multispectral absorption spectroscopy to infer hot-spot electron temperature and density
- SHIMG (LLE): differential shell imaging to infer shell areal density modulations

Layering sphere

The initial ice-layer rms at the triple point can be recovered after cooling 1.8 K

- rms ice roughness at discrete temperatures as target is cooled below the triple point.
- After annealing overnight (17 h), the power spectrum approached the original smoothness.

While layering is performed at the triple point, implosion performance is optimal at a temperature ~ 1.8 K colder.

The cryogenic data show the expected correlation with D₂ ice roughness and TCC offset

E12063

Analysis of PHC images showed a 60- to 120- μ m systematic offset from TCC at the start of the laser pulse.

The offset is computed as the average of up to five PHC views on each shot, reducing the errors significantly.

Direct-Drive Fast Ignition

Simulations show that a 1-kJ, 1-MeV electron beam raises the T_{ion} in the high-density fuel shell to ~10 keV

Direct-Drive Fast Ignition

Fuel assembly experiments with cone-focused targets leverage the OMEGA direct-drive program

Direct Drive on NIF

Direct-drive ignition and fast ignition may be possible on the NIF with the indirect-drive beam configuration

Aitoff projection of intensity on a capsule

σ_{rms} = 48% peak-to-valley = 157%

NIF direct-drive distribution using 24 (×4) beams in indirect-drive illumination

σ_{rms} = 6% peak-to-valley = 22%

NIF direct-drive intensity distribution with 24 (×4) beams repointed to a pattern similar to OMEGA 24

The penalty from asymmetric illumination may be mitigated by the clever use of phase plate design, beam pointing, pulse shaping, and ice layer/capsule shimming.

D₂ EOS

"Diving board" targets provide both impedance match and reshock data on cryogenic deuterium

D₂ EOS

Preliminary data support the compressibility of the Saumon-Chabrier model

Adiabat Shaping

For the initial experiments, a picket was added to an α = 2 drive pulse designed for CH shells

- picket intensity
- picket FWHM
- picket timing WRT the main drive pulse

Adiabat Shaping

An increase in the neutron burn rate and constant T_{ion} suggest a reduction in mix with the picket pulse

Adiabat Shaping

Both the experimental yield and the normalized yield (clean 1D) increase when a picket pulse is used

The picket increases the yield from D³He filled capsules with similar compressibility

UR

E11913a

Reduced Laser Nonuniformity

New DPP's with an n = 3.6 super-Gaussian profile will significantly improve the laser uniformity

Reduced Laser Nonuniformity

The new DPP design will immediately improve the direct-drive illumination uniformity on OMEGA

Reduced Laser Nonuniformity

Optimized beam shape significantly reduces low- ℓ **-mode contributions to laser nonuniformities**

	Beam shape	Beam pointing	Beam balance	TOTAL
Current DPP's (n = 2.3)	1.1%	1.9%	1.3 %	2.6 %
New DPP's (n = 4.2)	0.6%	0.6%*	0.4 % [†]	0.9%

 σ_{rms} contributors

* Requires precision beam pointing (\leq 10 μ m rms)

[†] Requires precision beam balance (\leq 2% rms)

All values are time averaged assuming 1-THz SSD conditions.