

CFC-Air Chemical Reactivity for IFE Safety Analysis

Presented by: D. Petti

T. Marshall, R. Pawelko, R. Anderl, B. Merrill, G. Smolik, R. Moore

> **Fusion Safety Program** April 5, 2002

Graphite oxidation is temperaturedependent

Low T ==> chemical kinetic control (flow rate independent)

Moderate T ==> inpore diffusion of oxygen (flow rate independent)

High T ==> boundary layer diffusion and potential oxygen starvation (flow rate dependent) ²

CFC-air reactivity tests were performed to improve fusion safety models

- Safety model used for SOMBERO analysis includes reactivity data from 1988 INEEL experiments:
 - reactivity data primarily in boundary layer diffusion regime
 - 15,000 sccm flow rate with older bulk graphite (Poco)
 - 800 1800 °C temperature range
- 2002 CFC-air reactivity experiment was designed to:
 - generate data in Regimes I and II of kinetic transport
 - utilize a modern 3D CFC (NB31)
 - utilize a state-of-the art experiment (QMS, BET, Dm_{c})
 - 525 1000 °C temperature range

Reactivity experiment provides weight loss and mass spectroscopy data

All measurements in centimeters

Test Specimen	CRC Type	NB-31	
	Specimens	10	
	Weight (avg)	1.6114 g	
	Geometric Surface Area (avg)	6.78 cm ²	
Experiment	Temperature	525 - 1000 °C	F
	Flow Rate	3, 100, 1000 sccm	T
	Flow Mixture	79%Ar-21%O ₂	U.

O₂ Flow Rate Influences R_{ox} in Regime II

Observations from INEEL data

- INEEL-1988 data are for dry air and bulk graphite, INEEL-2002 are for 79% Ar-21% O₂ mixture and 3D NB31 CFC.
- The INEEL-1988 data fit:
 - predicts a different transition temperature for the different types of graphite. between Regimes II and III (1000 °C bulk graphite vs 1175 °C CFC),
 - extrapolation over-predicts R_{ox} in Regime I (T < 700 °C)
- *INEEL-2002 reactivity tests revealed:*
 - oxygen starvation at 1000 °C observed due to the low flow rate,
 - significant CO₂ production at both low and high specimen temperatures,
 - activation energy of 53 kcal in the chemical kinetic control regime implies that C + 1/2 O₂ = CO (50 - 58 kcal) is the primary reaction at the specimen surface and agrees with the literature,
 - hypothesis that CO_2 is produced in the $Ar-O_2$ mixture downstream of the specimen.
- Updated correlation used in MELCOR uses new data in Regimes I and II and older data in Regime III for accurate safety analysis.

Fit of INEEL-2002 CFC-Air R_{ox} data and comparison with INEEL-1988 R_{ox} data.

Important phenomena in loss of vacuum/air ingress with loss of heat sink

- 1 atm)

- heats up
- flows in

Air enters vacuum chamber through break (~ 3 hrs to reach

• With only one boundary to breach, the accident begins Blanket starts to cool down Graphite oxidation begins to produce CO/CO₂. Blanket

Vessel breathes (based on Japanese LOVA experiments) --> natural convection flow pattern is established --> CO/CO₂ flows out and more air

10

Sombrero LOVA analysis using INEEL-2002 and INEEL-1988 CFC-Air R_{ox} data.

Observations from analysis using updated correlation

- Sombrero LOVA analysis revealed:
 - lower R_{ox} on the "back wall" allows more oxygen to be transported to the front wall, which increases the partial pressure of O_2 in the target chamber and hence the oxidation at the "front wall",
 - higher peak temperature using INEEL-2002 R_{ox} ,
 - R_{ox} from INEEL-1988 and INEEL-2002 produce a peak temperature above 800 °C, thus tritium retention is still a concern, most of the graphite oxidation occurs in Regime II - in-pore diffusion, which is strongly dependent upon the type of graphite used in the blanket.
 - final decision on the impact of these differences depends on tritium inventory, its mobilization as a function of temperature and the LOVA probability.

12

Summary

- Performed CFC-air reactivity experiments for flow rates of 100 and 1000 sccm and temperatures between 525 -1000 °C, significantly augmenting the database.
- High confidence in the generated CFC-O₂ reaction rates: - equivalent R_{ox} calculated using two different methods.
 - $-E_a$ of 53 kcal in the chemical kinetic control regime for the 100 sccm experiment agrees very well with literature by Walker¹.
- New MELCOR calculations show different blanket response during a LOVA and strongly depend on the type of graphite expected in SOMBRERO.
- INEEL report expected in April 2002.

¹P.L. Walker et al., Advances in Catalysis, Academic Press Inc., 1959, pg 157.

