### **The Mercury Laser Project**









Camille Bibeau Project Leader Laser Science and Technology



High Average Power Laser Review San Diego, California April 4 & 5, 2002



### CY 2002 Objectives:

- Build pump diodes for 2<sup>nd</sup> amplifier
- Install 7 Yb:S-FAP crystals in 1<sup>st</sup> amplifier and grow 7 more for 2<sup>nd</sup> amplifier
- Build and install second amplifier head and utilities
- Build full aperture Pockels cell and install in reverser
- Perform experiments with one amplifier fully populated with Yb:S-FAP crystals
- Continue advanced Yb:S-FAP growth
- Facility Upgrades

In 2002 we will have one amplifier fully populated with Yb:S-FAP producing up to 30 J of 1.047 um light and all diode arrays activated (640 kW)

#### Output

#### Front-end -

• 300 mJ, M<sup>2</sup>=1.8

### Gas-cooled amplifier head

• He gas flow at 0.1 Mach

#### **Crystals**

• 7 Yb<sup>3+</sup>:Sr<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F slabs in each amplifier head

#### **Diode arrays**

- 6400 diodes total (900 nm)
- 640 kW peak power









### We are conducting experiments on the Mercury laser



## We have fully tested the half size Pockels cell and are ordering parts for the full size element



100





#### **Update:**



Optics for full aperture Pockels cell out for bid (polarizers, waveplate, KD\*P)

### We have installed four backplanes in the system and are building four more for the 2<sup>nd</sup> amplifier

#### 

#### **Previous Review:**



# Interferometry with amplifier (Nd:glass, no wedge) were tested under full diode loading



# We have grown enough boules to install seven slabs in the 1<sup>st</sup> amplifier and four in the 2<sup>nd</sup> amplifier

### **Previous Review:**



#### Four slabs were diffusion bonded



#### Update:

- 4 slabs have been mounted into vanes
- 7 boules await cutting
- Recent damage tests on uncoated material yielded 50 J/cm<sup>2</sup> at 10 ns
- Previous impediments to cutting slabs are resolved with either laser or water jet cutting
- Modeling of stress underway with UC Davis



# Several polishing and cutting steps are required to fabricate a full sized slab



#### **Boules in waiting**







### We have identified two cutting processes which appear to minimize the risk of cracking

#### Laser cutting (fs laser at LLNL)



Advantage: fast, onsite process Disadvantage: requires cleaving step

#### Water jet cutting (Central Coast Gem Labs, Georgia)



Disadvantage: proprietary offsite process Advantage: inexpensive and provides cut slabs with smooth surfaces



Stress analysis by UC Davis is helping to define how the boules should be cut

#### S-FAP damage threshold appears to be surface limited and is currently 25 J/cm<sup>2</sup> (coated) - 50 J/cm<sup>2</sup> (uncoated) for 10 ns pulses



Ŀ

#### Additional damage tests are underway to improve statistics

Modeling of Mercury architecture indicates that 100 J operation can be achieved with low probability of amplifier damage

Fluence histograms at critical optics



### We have successfully flow tested the new wedged slab amplifier









### Flow tests with potted vanes show acceptable channel to channel pressure differentials between slabs



U

### We are already performing experiments with one amplifier populated with four Yb:S-FAP crystals



# We plan to use a phase plate to correct for the low order of distortion in the amplifier slabs

Wavefront distortion with helium gas flowing (3 glass and 4 S-FAP slabs)



- Primary distortion is due to bonding
- These are the "first" full size S-FAP slabs fabricated
- Improvements in progress
   LLNL: annealing
   ONYX: polishing
   Schott: developing room temp "glass glue"

 Phase plate offers correction and remove distortions near the source



# Wet-etch figuring can be used to fabricate the phase corrector for Mercury





### We are preparing to upgrade the facility in order to build and install 2<sup>nd</sup> amplifier head and utilities

#### **Update:**

- Room layout completed
- Utilities ordered
- Second amplifier design review 4/15
- Full system optical analysis completed
- Optics drawing being generated

### We are on schedule to produce first light with one amplifier this year



# We are working with Schott Glass Technologies to develop a glass glue for Yb:S-FAP



• Requires only 2x boule diameter scale-up for final kJ aperture



### The 5-year plan for DPSSL development has several parallel efforts in place



#### IRE Component Development (multi-kJ system)



**IRE Architecture** 

Code Development and Modeling — IRE Design