

IFE Materials Response

Z Machine Materials Studies

November 14, 2001

Tina J. Tanaka, Greg Rochau, Tim Renk, Craig Olson (SNL), Tim Knowles (ESLI), Per Peterson (UCB), and Robert Peterson (UW)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Outline

- Z machine
- Debris Issues
- Multipurpose radiation box (MPR)
- Methods of analysis
- Samples exposed and analyzed
 - $-\mathbf{W}$
 - Poco graphite
 - LiF
 - Honeycomb collimator
- Future Work

Z Machine

- Capabilities
 - 65 J/cm² of X rays in 20 ns (in present location)
 - Black body Temp.
 ~(200 eV)
- Availability
 - 1 shot per day
 - Piggy back mode
- Limitations
 - Only on shots when allowed
 - Depends on space available
 - Z machine needs to be in right configuration
 - Debris from target area must be mitigated

Debris Issues

- Z machine generates many X rays, but also debris from molten target material
- Fast valves may be an option, but only on occasional shots
- The MPRS box has significantly reduced the debris, but cannot eliminate it.

No collimation-20 μ m debris

With collimation-1 μm

Multipurpose Radiation Box (MPR)

- Stainless steel box
- Inner slide with filter and additional apertures
- Collimation

Methods of analysis

- Surface Profiling
 - Mechanical-Dektak
 - Optical-WYKO
- Scanning Electron Microscopy
 - Flat and cross sectioned samples
 - Measure debris depth of cross section samples
 - Elemental analysis
- Time-of-Flight Mass Spectroscopy
 - Depth profiling of debris

Proposed and tested samples on Z

Material	Fluence	Application
Graphite (Poco)	7 J/cm ²	Dry wall
Tungsten	~ 7 J/cm ²	Dry wall
LiF	42 J/cm ²	Wetted wall surrogate
Carbon velvet	~ 42 J/cm ²	Dry wall
Silicon Carbide		Dry wall
Carbon Composite		Dry Wall
Silicon wafer		Reference material
Aluminum		Reference material
FLiBe		Wetted wall

Tungsten

Poco Graphite

- Poco graphite, polished
 - Exposed in MPR box
 - 2 micron Kimfol + 100Å
 Al Filter
- Debris layer consists of Fe, Ni, Cu, Al
- No significant level change from ablation, instead 1-2 μm pits developed

SEM shows 1 μm debris

Lithium Fluoride as a FLiBe substitute

- LiF vacuum windows
 - Exposed in MPR box
 - No filters, only collimation
- Measured 3 micron step between original level and exposed region
- Flat ridge of LiF formed around edge of exposed region

Carbon velvet and honeycomb collimator

- Honeycomb collimator of Celcor
 - 1mm openings, 25 mm long
 - Aspect ratio similar to MPR box
- Material tested both collimated and open exposures on Z
 - 2 densities of carbon velvet
 - Carbon mirror
 - Epoxy coated AI
- Results
 - Much more velvet left on sample behind collimator
 - Little debris behind collimator
 - honeycomb pattern on all samples behind collimator

Future Work

- Adjust flux levels to determine threshold levels
- Test more materials
- How best to analyze carbon velvet and carbon composite materials?
- Fielding molten samples
- Start up web site

