Progress Report on Chamber Clearing Code Development Effort

A. R. Raffray, F. Najmabadi, Z. Dragojlovic, J. Pulsifer, M. Zaghloul University of California, San Diego

> A. Hassanein Argonne National Laboratory

P. Sharpe, B. Merrill, D. Petti Idaho National Engineering and Environmental Laboratory

> Laser IFE Meeting Livermore November 13-14, 2001

Strategy Include Careful Planning and Analysis Effort for Most Efficient Code Development

- Form team (UCSD, INEEL, ANL) and clearly define responsibilities 4
- Identify major processes, evolve model and determine key variables 4
- Perform scoping calculations to assess relative importance of competing 4 parameters and help prioritize inclusion of different processes in computer code
- Planning of code development includes:
 - Evolving overall code architecture
 - Identifying numerical solver package (already coded)
 - Identifying and assessing existing codes for calibration purposes of controlled cases, e.g.
 - CFDRC
 - HEIGHTS
 - RECON
- Code implementation and integration of packages

4

Team Assembled to Focus on Different Modules of the Chamber Physics and Clearing Code

Major Processes Have Been Identified and Modeled e.g. Surface Vaporization

Physics	Kinetic model based on surface temperature, activation energies and su rface conditions.				
Model	• Velocity of receding surface from surface vaporization, V(T), is a highly nonlinear function of surface temperature (T) and is given by: $V(T) = 5.8 \times 10^{-2} \frac{\alpha \sqrt{AP_V(T)}}{\rho(T)\sqrt{T}} \left[0.8 + 0.2e^{-t/10\tau} C \right] \text{ cm/s}$ where $\alpha = \text{sticking probability or accommodation coefficient (≈ 1)}$ $A = \text{atomic mass number of target material}$ $P_V = \text{vapor pressure of target material (torr)}$ $\tau = \text{vapor collision frequency (s^{-1})}$ $\rho = \text{density of wall material}$				
Key Parameters	Surface temperature and accommodation coefficient.				
Key Uncertainties	Comparison of simple equilibrium- basis equation with dynamic case; might require correction terms.				
Relative Importance	One of major mechanism for chamber wall erosion.				
Time-Scale	Comparable to energy-deposition time-scale				
Spatial Location	Wall surface.				
Inter-relation with Other Processes	All processes affecting surface temperature evolution (i.e. energy deposition; thermal diffusion, condensation)				
Inclusion in Model	Above model is included from the start.				

Scoping Calculations Performed to Assess Importance of Different Effects and Conditions

- Chamber Gas
 - At high temperature (> ~ 1 ev), radiation from ionized gas can be effective
 - In the lower temperature range (~ 5000K back to preshot conditions)
 - Conduction (neutrals and some electrons)
 - Convection
 - Radiation from neutrals
 - Other processes?
 - The temperature of the gas might not equilibrate with the wall temperature
 - May have implications for target injection
 - Xe at low pressure (~10-50 mTorr) might not be effective in reducing ion energy deposition and flux on chamber wall
- Other scoping calculations
 - Chamber mass transport (presented by P. Sharpe)
 - Chamber wall interaction (presented by A. Hassanein)

Effectiveness of Conduction Heat Transfer to Cool Chamber Gas to Preshot Conditions

- Simple transient conduction equation for a sphere containing gas with an isothermal boundary condition(T_w)
 - k_{xe} is poor (~0.015 W/m-K at 1000K, and ~0.043 W/m-K at 5000 K)
 - At higher temperature electron conductivity of ionized gas in chamber will help

(assumed ~ 0.1 W/m-K for $n_e = n_o$ and 10, 000 K)

- Argon better conducting gas
- T decreases from 5000K to 2000K in ~2 s for $k_g = 0.03$ W/m-K
- Even if k_g is increased to 0.1 W/m-K, it does not help much (~ 0.6 s)

Temperature History Based on Conduction from 50 mTorr Gas in a 5 m Chamber to a 1000K Wall

Effectiveness of Convection Heat Transfer to Cool Chamber Gas to Preshot Conditions

- Simple convection estimate based on flow on a flat surface with the fluid at uniform temperature
- Use Xe fluid properties
- Assume sonic velocity
 - c ~ 500 m/s
 - Re ~ 700 for L = 1 m
 - Nu ~ 13
 - $h \sim 0.4 \text{ W/m}^2\text{-}K$
- Lower velocity would result in lower h but local eddies would help
 - Set h between 0.1 and 1 W/m²-K representing an example range
- T decreases from 5000K to 2000K, in ~0.1 s for h = 0.4 W/m²-K
- Increasing h to 1 W/m²-K helps but any reduction in h rapidly worsens the situation (e.g. ~0.4 s for 0.1 W/m²-K)

Temperature History Based on Convection from 50 mTorr Gas in a 5 m Chamber to a 1000K Wall

Effectiveness of Radiation Heat Transfer to Cool Chamber Gas from Mid-level Temperature (~5000K) to Preshot Conditions

- Xe is monoatomic and has poor radiation properties
 - Complete radiation model quite complex
 - Simple engineering estimate for scoping calculations
 - No emissivity data found for Xe
 - Simple conservative estimate for Xe using CO₂ radiation data
 - T decreases from 5000K to 2000K, in ~1 s (would be worse for actual Xe radiation properties)

$$\mathbf{q_r''} = \boldsymbol{\sigma} \ \boldsymbol{\epsilon}_{\mathrm{w}} \ (\boldsymbol{\epsilon}_{\mathrm{g}} \mathbf{T}_{\mathrm{g}}^{-4} - \boldsymbol{\alpha}_{\mathrm{g}} \mathbf{T}_{\mathrm{w}}^{-4})$$

Temperature History Based on Radiation from 50 mTorr Gas in a 5 m Chamber to a 1000K Wall

Effectiveness of Heat Transfer Processes to Cool Chamber Gas (Xe) to Preshot Conditions is Poor

Conservative estimate of Xe temperature (K) following heat transfer from 5000K

Time:	0.1 s	0.2 s	0.5 s	~1 s
Conduction:				
k=0.03 W/m-K	4700	4500	3600	2700
k=0.1 W/m-K	3900	3200	2200	1500
Convection:				
h=0.1 W/m ² -K	3800	3000	1650	1200
h=0.4 W/m ² -K	1950	1220	~1000	
h=1 W/m ² -K	1250			
Xe Radiation:				
(assum. $CO_2 \epsilon$ and α)	3500	2850	2300	2200

- Only possibility is convection with high velocity and small length scales (optimistic requiring enhancement mechanisms) and/or appreciable gas inventory change per shot (by pumping)
- Background plasma in the chamber might help in enhancing heat transfer (e.g. electron heat conduction, recombination)

Effectiveness of Chamber Gas (Xe) to Attenuate Ions (e.g. D and He from Direct Drive Target Spectra) is Poor at Low Pressure (~10-50 mTorr)

e.g. ~10 mTorr Xe

- Energy attenuation and ion flux decrease marginal
 - Minor effect on wall temperature and erosion
 - Minor effect on reducing energy and number of ions potentially causing damage on long term armor integrity

Effectiveness of Chamber Gas (Xe) at Higher Pressure to Attenuate Ions (e.g. D and He from Direct Drive Target Spectra)

e.g. ~100 mTorr Xe

- Effect on energy attenuation and ion flux decrease becomes significant for gas pressures > ~100 mTorr
- Ion attenuation would be markedly enhanced by the presence of ionized gas in the chamber (electron slowing down, collective processes?)

Plasma Effect Could Help?

- Need to include impact of plasma on chamber self consistently
- Increase in heat transfer
 - Recombination processes
 - Enhanced radiation
 - Electron conductivity
- Increase in stopping power (reduce ion flux)
- Zero dimensional plasma scoping model to understand relative importance of these effects (just started)
 - Cannot assume that system in equilibrium

Why Xe?

- Low pressure Xe gas as a neutral will not be effective
 - Poor heat transfer capability
 - No appreciable reduction in flux and energy of ions
- If a low pressure gas is needed why not consider another gas based on:
 - Minimizing species in chamber
 - Facilitating pumping
 - Minimizing laser breakdown
 - Better heat transfer (more effective chamber gas temperature relaxation)
- Tendency to settle on previous design and material choices
- It is healthy to reconsider reasons behind some of these choices
 - e.g. study starting from fundamental issues to determine which chamber gas to use

Concluding Remarks on Chamber Physics and Clearing Effort

- Team has been assembled and responsibilities defined
- Major processes, relevant models and key variables have been identified
- Several lessons from initial effort
 - Chamber physics processes very complex
 - Need to understand and characterize them for effective code development
- Scoping calculations have been performed and relative importance of processes and parameters assessed
 - Poor heat transfer performance and minor ion attenuation effect of low-P neutral Xe gas
 - Why Xe?
 - Choice of gas should be made on other considerations, such as:
 - Pumping
 - Minimizing chamber constituents
 - Chamber gas temperature relaxation
 - Laser breakdown
- Plasma effects might help (zero-D model for scoping calculations)
 - Proceeding with Code implementation

