Neutronics and Activation Results for Samples Irradiated by D-T Neutron Source at LANSCE

> H. Khater and M. Sawan Fusion Technology Institute The University of Wisconsin

Background

- Fused silica and CaF₂ samples irradiated by neutrons at LANSCE
 - 14 MeV neutrons from D-T source
 - High energy neutron source at the Weapons Neutron Research (WNR) facility with energies up to 600 MeV
- Neutronics and activation calculations performed to determine the amount of activation products and impurities generated in the samples and dose rate during post-irradiation handling
- Results for 14 MeV irradiation reported here. Calculations for WNR irradiation underway

Calculation Procedure

- Neutronics calculations performed using the 2-D module of the DANTSYS 3.0 particle transport code system
- Calculated neutron flux used in the activation code
 ALARA to calculate amount of transmutation products
 generated in samples following one week irradiation
- Decay gamma source generated from decay of radioactive transmutation products transported to determine biological dose rate as a function of distance from sample at selected times following irradiation
- FENDL-2 evaluated nuclear data used in neutronics and activation calculations

Geometrical Model

- Neutron source located at center of five-sided steel crypt
- Neutron source strength is 10¹¹ n/s
- 1 mm thick source
- 1 cm³ sample with 1 cm thickness
- Front surface of sample at 1 cm from source
- Uncollided 14.1 MeV neutron flux at front of sample is 8x10⁹ n/cm²s
- Surrounding crypt was assumed to be made of SS316L
- Reflected neutrons amount to only 6% of total flux at sample

Transmutation Products

Detailed tabulated results for transmutation products generated in the SiO₂ and CaF₂ samples after 1 week irradiation were provided to LANL
Stable nuclides dominate impurities produced
Impurities in SiO₂ amount to 2.06 appb and include H, He, C, N, F, Mg, Al, and P
Impurities in CaF₂ amount to 2.34 appb and include H, He, N, O, Ne, Cl, Ar, K, Sc and Ti

Post Irradiation Handling of Samples

- Dose rates evaluated as function of distance from the sample at different times following a one-week irradiation period
- Results are useful in determining how close to the sample one could get and how long a cooling period is needed to have acceptable dose rates
- The plan is to do the post irradiation analysis in a lab with dose rates from the samples <5 mrem/hr on contact

Dose Rate Around Fused Silica Sample

➡ Immediately after irradiation one should remain at least 0.5 m away from sample

 \Rightarrow Contact dose for the SiO₂ sample reduces to 2.4 mrem/hr after one hour

Dose Rate Around CaF₂ Sample

⇒ Dose from CaF₂ sample is a factor of ~2 lower than from SiO₂ sample immediately after irradiation but drops much slower with time due to ⁴⁷Ca $(T_{1/2} = 4.5 \text{ d})$

 \Rightarrow Contact dose for the CaF₂ sample reduces to 0.9 mrem/hr after one month

Extrapolation to Multiple One-Week Irradiation Cycles

- Three one-week irradiation cycles are being considered with one month in between
- While short-lived isotopes decay between irradiation cycles, long-lived and stable isotopes accumulate from one irradiation period to the other
- Results will be higher than those reported for one irradiation period by a factor of 1-3 depending on dominant radionuclides
- Impurities produced are dominated by stable isotopes and total impurities after three one-week irradiation periods will be about a factor of 3 higher

Extrapolation to Multiple One-Week Irradiation Cycles

- •We will use the conservative assumption that dose rates after three irradiation cycles will be three times those for one irradiation period
- •We recommend using a safety factor of ~3 to account for uncertainties in modeling, calculation method, nuclear data and sample composition
- Therefore, the dose rate results reported here need to be increased by about an order of magnitude for 3 irradiation cycles

Summary

- Low impurity level generated in samples
 After a single one-week irradiation period
 - 2.06 appb in SiO₂
 - 2.34 appb in CaF₂
 - Impurity level increases linearly with irradiation time
- For post irradiation of samples with <5 mrem/hr contact dose
 - After a single one-week irradiation period
 - ~2 hour cooling period required for SiO₂
 - ~1 month cooling period required for CaF_2
 - After three one-week irradiation cycles
 - ~3 hour cooling period required for SiO₂
 - ~2 month cooling period required for CaF_2

