

THERMAL AND STRESS ANALYSIS OF A SOLID DT TEST SPECIMEN

James K. Hoffer and J. Gregory Swadener

presented at the

Laser IFE Workshop

sponsored by

The Department of Energy
Offices of Fusion Energy Sciences &
Defense Programs

November 13, 2001

Target Injection-1: Target Materials Response - *LANL*

Overall Objective	Response of target materials to injection stresses	
FY 02 Deliverables	 Modify existing apparatus to accommodate new 'DT strain cell.' Assemble and bench-test strain cell using no hydrogen (warm experiments, using 'butter'). Start experiments to measure DT yield strength and modulus. 	
PI Experience(POC: J. Hoffer)	Extensive experience with DT and DT-layering	
Proposed FY02 Amount	\$ 200 k	
Relevance of Deliverables [X] NIF [] Laser RR Facility	Research in materials in NIF targets	
[] Other DP/NNSA [X] Energy	Needed for injection into chamber	
Related DP activities	Define experiments to measure the effect of a sudden thermal load on a DT-layered target	

Finally, we enclose all of this assembly inside a tritium cell with optical ports:

What the camera might see: (version 'A')

What the camera might see: (version 'B')

What the camera might see: (version 'C')

What's next?

- Complete design of the "DT-strain cell"
 - Perform thermal modeling of layer formation
- Perform strain analysis on proposed sample shape
- Redesign cryostat if necessary
 - this assembly may be too long for existing apparatus

In fact, the "DT-strain cell" is not too large, but the optics don't fit our existing cryostat:

THERMAL & STRESS ANALYSES

TYPICAL SPECIMEN SHAPE

THERMAL EQUILIBRIUM SHAPE?

DOE OFES/DP

Hydrogenic solid shear strength data from ORNL H, D, T pellet experiments

MATERIAL PROPERTIES AT 18 K

	Copper	DT
E (GPa)	138	0.02*
E _t (GPa)	_	0.002*
σ_y (MPa)	120	0.02*
ν	0.34	0.3*
ρ (g/cm ³)	9.03	0.254
K (W/m/K)	1800	0.33*
C _s (J/g/K)	0.05	17.7*
Q (W/m ³)	_	49 000

^{*} estimate

THERMAL ANALYSIS - FE MESH

THERMAL ANALYSIS - ITERATIVE SOLUTION

THERMAL ANALYSIS - NOTCH DEVELOPS

THERMAL ANALYSIS – 110 μm layer

THERMAL ANALYSIS - DETAIL

D2 Stress-Strain Response Bol'shutkin et al., 1970

STRESS ANALYSIS - REFINED MESH

ELASTIC STRAINS: e = 0.0005

ONSET OF YIELDING: e = 0.001

ADDITIONAL YIELDING: e = 0.0015

WORK HARDENING: e = 0.003

ADDITIONAL HARDENING: e = 0.004

ADDITIONAL HARDENING: e = 0.006

HIGH STRESS: e = 0.009

FEA LOAD-DISPLACEMENT RESULTS

THERMAL & STRESS ANALYSES

TYPICAL SPECIMEN SHAPE

THERMAL EQUILIBRIUM SHAPE?

DOE OFES/DP