DEC-13-1999 13:28 PPFL ENGIMEERIMNG 1 689 243 26838 P.@1-.27

ARIES-AT

Extension of the Physics Basis for
ARIES-RS

C. Kessel
Princeton Plasma Physics Laboratory

ARIES Project Meeting
December 1-3, 1999



DEC-13-1993 15:28 FPPL ENGIMEERIMNG 1 689 243 3838 P.E2-27

Improvements Over ARIES-RS

e using = 99% flux surface from free-boundary plasma
equilibria rather than assumed 95% flux surface

— larger elongation and triangularity giving higher
stable 3

e using more flexible pressure profile formulation

— allows better bootstrap alignment and higher
ballooning B limit

e higher triangularity, elimination of inboard slot divertor

— allows higher Bn and higher Ip, resulting in large
B increase (recall B = Bn(lp/aBrT))

» higher elongation, moving vertical stabilizing shell closer
to plasma

— allows higher 3~ and higher lp, resulting in large
B increase

¢ elimination of HHFW, and use of only LHCD for off-axis
current drive

— allows reduction in Pco and reduces number of
CD systems?
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Impact of Increased Plasma Elongation

» since the possibility of moving the vertical stabilizer shell
closer 1o the plasma was raised, elongation studies were
done

- shell location has traditionally been in the gap between
the blanket and shield, typically b/a = 0.5

— ARIES-AT blanket design would allow the shell to be
at b/a = 0.25-0.35

e elongation has a strong impact on B, partly from BN,
but more importantly from increases in plasma current

B = BN (Ip/aBT) = BN/g+ x 2.5 & (1 + k2)

» using analytic boundaries, elongation was scanned and
n=e ballooning, n=1-6 kink, and n=0 vertical stability was
examined, with the following constraints

~-0=07
— (Qedge = 3.5

-A=40
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plasma current, MA
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wall location, normalized to minor radius
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Plasma Elongation, cont'd

» ballooning stability shows a peak in BN around k = 2.4, however,
due to increasing Ip the B continues to increase

¢ Kink stability shows that the strongly triangular plasmas have
shifted the most unstable mode to higher toroidal mode number
nz 6, and that beyond an elongation of 2.2-2.4 the required
kink stabilizing wall location rapidly moves closer to the plasma

e vertical stability analysis indicates which plasma elongations are
viable based on the distance between the plasma and the
actual vertical stabilizing shell

b/a = (Ar(SOL) + Ar(1st wall} + Ar(blanket)) / a

e from vertical stability analysis, the required stability factor
could be obtained in the following cases

b/a=0.25,x=25,p=15.7%
b/a=0.30,x=23,p=12.7%
b/a=0.35x=2.1,p =10.5%

—> the actual case depends on the SOL width, in addition to
engineering design
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stability factor, fs = 1 + 19/ TR
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Plasma Elongation, cont'd |

 the vertical stabilizing shell used in the analysis has a poloidally
continuous shell on the outboard and on the inboard, with a
- gap at the divertor

e this shell will have to be reduced in poloidal extent to incorporate
in the design, by removing the region closest to the midplane

e it is most likely that the elongation at the separatrix will not exceed
2.2-2.3, when the actual wall distance and poloidal coverage
are accounted for, leading to a B increase of 35-45%

» the tungsten thickness is expected to be about 5.5-6.0 cm
to account for the high temperature

¢ feedback control calculations will need to be done on the final
configuration, with coils located behind the sheild
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Vertical Stability / Elongation Scan
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Finite Edge Density

e including a finite edge density allows increased radiation
from the plasma edge and leads to cooler plasma edge
temperatures which are desirable for the divertor heat
loads

e ARIES-RS found that to effectively radiate more power from
the plasma (line radiation), to relieve the divertor heat load,
we need edge densities n(a)>0.4xn(0), which lead to

— strong bootstrap current reduction

— increased CD requirement near the plasma edge

— excessive increases in Zeft in the core, further increasing
CD power

» the solution was to use n(a) = 0.2xn(0), neon as the impurity
with nne/ne = 0.8%, making Zett = 2.0

e have examined By = 5.6, 6.0, and 6.5 cases with n(a)/n(0)=0.2
to find stable equilibria and CD requirement

— off-axis CD has increased to about 1.2 MA in all cases



DEC-15-1999 15:31 PPFL ENGIMEERIMG 1 6689 243 33 P.15-27

el
1]

5] ®i
11 ‘ ]!

0.40
bootstrap

-
-
b
| -
| Y-
=
O | o3 4 [ -&)
- a - [ - LA B et
% JUNL¥dddWal ALISNIO E [ IHd)OVHD 'B>/<E > "C-U'
| gzi =y L _U
-'CT)' [TTY | [T m
i % 2 = @' 8 g
o . 9 ] W o o —
D o ar ar _§ ov (4] TU
m [ 1] = [ ;;\ as
= a - o - ™ - Nmom e ow Nom — }
% NLYEIdHAL ALISNIA E [ IHd FAYHD Brs <l 1= g) __g
O
[ 4] [} al = q')
E\ i 1! L E g
.2;5 g;Ei a3 3 gg‘ [ ;E}- _E!! 't:s
c P . . g >
8 @ " a g B2
/]
= = - 3 - L - MW @ e W oW m ._ﬂ'
q) JuNLYHIAIL A11SN30 E <[ IHd I QvHD "G+ /<B "> 1:5 _u
i
U) B4 [ ) [.-18 C %
v gai B3] -] 18 E -
LLJ 2 a8 w & 28 ":"" (v §)
29 » B
. _g [ O N
2 © : NG ge
C L
- — ] R » = - " - gRaa T - -
LI_ AHMALYHAAW L J.J.ISNBUE <LIHG 1 QYYD B>/l > "g g
— I o L
ezl uzy [ 148 ———
O 8 Ln Bal [ 1.1 21 LD a
it
Q F 9 " . £
“q_) :...."""..._‘ D iy w g ar
m E " " oz
: - [ - - - ™ - Now W W o+ Nom

2

JHNLYHIDHIL ALIGNIQ o £ (IHdIOYHD "Her<B >



P.16-27

1 689 243 3838

FPPL ENGIMEERIMNG

15:31

DEC-13-1999

Finite Edge Density Equilibria
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Finite Edge Density Equilibria

O - n(a)=0 equilibria
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Exceeding the Greenwald Density Limit

e the Greenwald'density limit, nar < Ip/a**2, is found to limit
most tokamak experiments, however, power plants at high
B require n > NGr

e recent experiments indicate that the Greenwald density limit
is tied to unstable MARFE formation, and the excessive
radiation associated with them

» avoiding the formation of MARFE’s or avoiding the MARFE
moving into the main plasma has allowed TEXTOR and
DIlI-D to exceed nGr by up to a factor of 2

» this has important implications because our choice to go with
high triangularity has eliminated an inboard slot divertor, so
particles and heat directly hit inboard first wall
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o ARIES-AT will operate above the Greenwald density limit
so we must have Tedge > 100 eV and pumping on the
inboard strike point region
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Plasma Transport Constraints

e in ARIES-RS the only contraint imposed on kinetic
profiles (n,T) was that the dominant gradient lie inside
or around the gmin location

e this constraint was used because there were, and still
are, significant differences between RS profiles in
various tokamak experiments

— H-mode or L-mode edge

— Te, Ti, n affected by [TB

— heating schemes on various devices (access inside
ITB)

e we are primarily interested in findihg kinetic profiles that
provide good bootstrap alignment and ideal MHD
stability

- the profiles used are not inconsistent with experimental
observations

— however, our gradients are spread out over a larger
region than those observed on experiments, which
would require some form of ITB control

e the characteristics of kinetic profiles outside of gmin should
be determined to give good bootstrap current

and ideal MHD stability along with

— neoclassical tearing mode stability
— connection to divertor solution/radiated power fraction
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Experimental RS Profiles
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Experimental RS Profiles
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Experimental RS Profiles
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Fig. 3. A time sequence of the measured profiles of ¢ (MSE), T, (Thomson scattering and
horizontal ECE), ng (Thomson), T;and toroidal rotation (CER). The vertical dashed line

represants the radius of qpn;np. The difference between the innermost vertical and
tangential CER T; measurements is due to dilfering systematic errors. The values plotted

represent upper and lower bounds to the true 7;
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Experimental RS Profiles

£2 , B.6s
10 e 8es  ITB 20 i}
a8l {(a) |
& F : i 15
- 6f N 77/
JT-b0 & [ e ] gm
% 4f % 1 =
"‘:'2: i ] 3
o-lllllll|ll ..r!.luuub D lllll’llll‘i Allll
a 0z 0.4p0.6 08 1 0 02 O.4PD.E 08 1
14 Ty T 2 10 TTTrIrrryrr
12 SR 8
10F g P
8F ™ 10 =6
6 Tq 2
: {1 =4
4 |- . 1 ]
2f S 12 2 .
0_||:l|||I|i ‘éllllll_ 0 N EEWE N £I|o|
0 o2 0.4p 06 08 1 0 o2 0,4p 06 08B 1
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Figure 14. Radial profiles of ion and electron temperatires (ECE and Thomson scattering), electron density and
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(Xneo} [10]. The caleulated g profile is given in (d), .
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Summary

e elongation studies show that  can be increased
significantly

— Bn(ballooning) rises up to k=2.4, and then drops

— the kink stabilizing shell remains at 0.2a and then
drops rapidly beyond x=2.2

— vertical stabilizing shells in the range 0.25a-0.35a
allow elongations in the range 2.5-2.1, with
B’s in the range of 10.5-15.7%

— likely configuration has x =2.2, and 3 = 11.6%

e finite edge densities allow reasonable divertor solutions,
but affect bootstrap current and CD

— used n(a)=0.2n(0) and found ideal MHD stable cases
with increased off-axis CD

e we will be operating above the Greenwald density limit,
and we have no inboard slot divertor to avoid strong
recycling

— recent experiments have demonstrated operation above
the Greenwald density limit by avoiding MARFE's

- we must have consistent story of how we will achieve
this; inboard strike point pumping, to be demonstrated
on DIII-D
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Summary, cont’d

e density and temperature profiles have been constrained
only roughly up to now for ARIES-AT (and ARIES-RS)

— our interests have been to optimize bootstrap current
alignment and MHD stability

— our assumed profiles are not inconsistent with
experimental profiles, but have their gradients spread
out more than those observed

— we are assuming some form of ITB control to relax
the gradients and spread them out

— the profiles of density and temperature outside of
gmin are important as well, and will affect the
divertor solution, CD, neoclassical tearing stability

o future work

— begin to examine finite pressure gradient at the
plasma edge (or just inside the edge)

— poloidal field coil solution for ARIES-AT

— aspect ratio effects 777
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