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Contents 

•  Radial/vertical builds (same as presented at May 2012 meeting) 

•  Shielding options for maintenance ports 

•  Activation results: 

–  WDR of IB SR and VV 

–  IB and OB decay heats. 

•  Remaining tasks. 
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ARIES-ACT-1 Radiation Limits 
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Calculated Overall TBR    1.05 
Net TBR (for T self-sufficiency)  ~1.01 

Damage to Structure  3%   Burn-up for SiC/SiC composites 
   (for structural integrity)  200   dpa for advanced FS 

   ???  W structure of divertor 

Helium Production @ Structural Ring & VV  ---  (not reweldable during operation) 
    1  He appm if reweldable 

LT S/C Magnets (@ 4 K): 
    Peak fast n fluence to Nb3Sn (En > 0.1 MeV)  1019  n/cm2 
  Peak nuclear heating  2  mW/cm3  

 Peak dpa to Cu stabilizer  6x10-3  dpa   
 Peak dose to GFF polyimide insulator  < 1011  rads  

Plant Lifetime  40  FPY 

Availability  85% 

Operational Dose to Workers and Public  < 2.5  mrem/h 
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Radial / Vertical Builds 
(incorporated in CAD Drawings  

and ARIES System Code) 

? 



ARIES-ACT-1 Inboard Radial Build 
at Midplane (Peak IB Γ = 3.3 MW/m2) 

•  LT shield thickness and composition optimized to protect magnet 
•  Structural Ring should be replaced every 10 FPY 
•  None of IB components is reweldable. 
•  VV, LT shield, and magnet are life-of-plant components 
•  Effect of neutron streaming through assembly gaps on damage and lifetimes 

of SR, VV, LT shield, and magnet will be assessed with 3-D analysis. 
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ARIES-ACT-SiC Outboard Radial Build 
at Midplane (Peak OB Γ = 4.7 MW/m2) 
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•  LT shield thickness and composition optimized to protect magnet 
•  Structural Ring is not reweldable around midplane 
•  VV is reweldable away from gaps 
•  Without gaps, Structural Ring, VV, LT shield, and magnet are life-of-plant components. 
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ARIES-ACT-1 Vertical Build 
(Peak div Γ = 2 MW/m2) 

7 
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Vacuum Vessel 
    Gap 

Divertor 
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Gap 
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Divertor Shield  20 

Large Gap + Th. Insulation 

Winding Pack 

Electric Insulator, Coil Case 4.2 
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LT Shield 
(13% FS, 23% H2O, 

64% WC) 

Structural Ring 

45 

Electric Insulator, Coil Case 

Lower manifolds embedded in shield: 
•  Manifolds supply LiPb to IB blanket 
•  Located between divertor and SR 
•  Contains divertor pumping ducts. 

•  10 cm thicker vertical build compared to ARIES-AT 
•  Same LT shield thickness and composition as for IB 
•  Lifetime of W-based divertor is unknown 
•  Steel Ring should be replaced every 20 FPY 
•  None of vertical components is reweldable 
•  Without gaps, VV, LT shield, and magnet are life-of-

plant components 
•  Effect of neutron streaming through assembly gaps on 

damage and lifetimes of SR, VV, LT shield, and magnet 
should be assessed with 3-D analysis. 

     Gap 



Blanket and Divertor Compositions 
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  Thickness (cm)  Composition 

   (volume %) 

IB Blanket  35  18% SiC/SiC Composites 
   82% LiPb 

OB Blanket-I  30  16% SiC/SiC Composites 
   84% LiPb  

      
   

OB Blanket-II  45  19.3% SiC/SiC Composites 
   80.7% LiPb  

Divertor Plates  6  9% W armor, 36% W alloy, 
   11% ODS-FS, 44% He coolant 

Li15.7Pb84.3 @ 700 oC;  8.8 g/cm3 density;  60% enriched Li 
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Shielding Options for  
Maintenance Ports 

? 



Maintenance Ports 
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Maintenance 
Port 

TF Magnet 

Is Shielding Door  
needed? 

How to accommodate OB penetrations (ICRF, EC, LH, etc.)? 



Shielding Concerns 
–  OB magnets are well shielded radially with stepped assembly gaps. 
–  Sides of magnets are not protected as 10 cm thick port walls are insufficient (refer to May 

2012 presentation).  
–  Shield must be placed either at entrance or along side and back walls of each port. 
–  Thickness of shield depends on materials. 
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OB Cross section 
of Page 6 

OB TF 
Magnet 

  Maintenance Port 

10 cm Thick Door 

  Maintenance Port 

Shield-I at entrance  

Shield-II along side and back walls  
(~5 times volume of Shield-I) 



Options for Shield-I/II Composition/Thickness 
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(blocks of steel)  
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Activation of IB VV and SR 

? 



WDR of FS-Based IB Components 

•  Problem: SR and VV generate high-level waste (HLW). 

•  Solution: Reevaluate WDR with “Present Impurities”. 
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SR (10 FPY): 
   80% ODS-FS, 20% He 

VV (40 FPY): 
   90% 3Cr-3WV FS, 10% He 



“Present” Impurities 
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•  To reduce long-term radioactivity, Klueh (ORNL) provided list of lowest 17 
impurities (including 0.5 wppm Nb and 5 wppm Mo) that have ever been 
achieved in large-scale melting and fabrication practices of various steels.  

•  “Present” impurities are not specific to any particular steel composition and 
should be achievable at present with relatively modest effort and cost.  

Reference: R. Klueh et al., Impurity effects on reduced-activation ferritic steels developed 
for fusion applications, Journal of Nuclear Materials 280 (2000) 353-359. Table 4, 
Page 357.  



Compositions 
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“Nominal” Impurities (from suppliers) “Present” Impurities  



Class C Classification of VV and SR 
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10-1

100

101

Nominal Impurities
Present Impurities

1 2

VV
  a

nd
  S
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Class C
LLW

VV

•  Both VV and SR generate HLW using FS with “nominal” impurities. 
•  Both components qualify as LLW with “Present” Impurities. 
•  Unit costs of 3Cr-3WV and ODS ferritic steels should reflect cost of 

controlling 17 impurities, especially Nb and Mo.  
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1-D Decay Heat Analysis 

? 



IB Blanket Decay Heat 

•  LiPb, SR, and VV generate more 
decay heat than SiC structure of 
IB blanket. 

•  WC filler of LT shield generates 
high decay heat. 
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OB Blanket Decay Heat 
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•  LiPb generates more decay heat than 
SiC structure of OB blanket. 

•  W stabilizing shells generate highest 
decay heat in ARIES-ACT-1. 

•  Worst case accident scenario would be 
loss of LiPb flow (LOFA in blanket) 
and loss of He and water coolants 
(LOCA in other components). 



TBD 
By Dec 2012: 
ARIES-ACT-1: 

–  Document nuclear analysis: 
                    NWL, TBR, nuclear heating, activation. 

ARIES-ACT-2 parameters: 
–  Radial/vertical build definition with thin VV: 

•  Check 3-D TBR and determine blanket thickness 
•  Define thicknesses and composition of all components. 
•  Any special requirements regarding: 

–  Reweldability of components, especially IB LiPb/He manifolds 
–  Lifetimes of IB Structural Ring, and manifolds? 

–  Nuclear heat loads to all components. 
–  1-D decay heat for the LOCA/LOFA assessment. 

By June 2013: 
•  3-D activation analysis (first ever for ARIES project) for ARIES-ACT-1,2 (decay heat, WDR, 

recycling, and clearance). 
•  2- or 3-D temperature response during LOCA/LOFA. 
•  Peak damage to IB and OB components with straight and zigzagged gaps. 
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Evolution of Assembly Gaps  
during Operation 

Relative  Temperature  Neutron-induced 
Change   Swelling at EOL 

Top  High  Low 

Middle  Medium  High 

Bottom  Low  Low 
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•  Assembly gaps will not completely close during operation. 
•  They should not be closed to allow removal of components. 
•  Gaps will close non-uniformly in all directions. LiPb-in 

(with lowest temp) LiPb-out 
(with highest temp) 


