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LLL 

Neutron Wall Loading Distribution 
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ARIES-ACT-DCLL Parameters  
(aggressive physics) 

Fusion Power  2767.5 MW 
Major Radius   6 m 
Minor Radius  1.5 m 
Elongation  2.2 

Plasma surface area = 565 m2 

Surface area @ 10 cm from plasma = 588 - 599 m2 

Average NWL @ 10 cm from plasma = 3.7 – 3.77 MW/m2 

OB FW area = 350 m2 

IB FW area  = 180 m2 

Curved IB FW offers  
10 cm more space at 

top/bottom for  
IB manifolds OB FW 

ARIES-ACT-DCLL FW and Div 
(Courtesy of X. Wang (UCSD)) 
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Neutron Wall Loading 3-D Model 

63% 

32% 

5% 
OB FW 

 Divertor 

IB FW 
    Neutron Source 

Approximate neutron source intensity 
results in exact OB and divertor  

NWL  distribution, but 
underestimates peak IB Γ by 10%. 

NWL will be updated using actual neutron source  
distribution on R-Z grid within plasma 
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NWL Distribution 
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Peak Γ @ IB  4 x 1.1 = 4.4 MW/m2 

Peak Γ @ OB  5.5 MW/m2 

Peak Γ @ Div  2.2 MW/m2 

Peak to av. NWL  ≈  1.5 

Too high for DCLL blanket, per S. Malang. 
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LLL 

Revised Radial Builds: 
•  Inboard 
• Outboard 
• Divertor. 



7 

Initial Radial Builds 

Thicker blankets (0.65 m on IB and 1 m on OB) mandate redefining 
thicknesses and compositions of non-breeding components to  

satisfy design requirements and radiation limits. 

IB (most compact radial build) 

OB 

Div 
2009/2010 Radial Builds 
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Major Changes/Additions to Radial Builds 

•  Thicker IB Back Wall to protect Skeleton Ring for plant life:  

      ⇒  no need for replaceable HT shield. 

•  Reweldable back of Skeleton Ring (at least 20 cm thick). 
•  Reweldable VV everywhere including IB. (None of previous ARIES design had 

reweldable IB VV at midplane). 

•  Exclude materials with high decay heat to control temperature during LOCA:  

       ⇒  no WC filler in IB VV 

       ⇒  no W (or WC) for Shielding Block behind IB assembly gaps. 

•  2 cm thick He-cooled Thermal Shield between VV and magnets. 

Changes lead to larger radial builds 
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ARIES-ACT-DCLL Radiation Limits  

Calculated Overall TBR    1.1 
Net TBR (for T self-sufficiency)  ~1.01 

Damage to Structure  200   dpa - advanced FS 
   (for structural integrity)   ???  W structure 

Helium Production @ Manifolds & VV  1  He appm 
   (for reweldability of FS structure) 

LT S/C Magnets (@ 4 K): 
    Peak fast n fluence to Nb3Sn (En > 0.1 MeV)  1019  n/cm2 
  Peak nuclear heating  2  mW/cm3   

 Peak dpa to Cu stabilizer  6x10-3  dpa   
 Peak dose to GFF polyimide insulator  < 1011  rads  

Plant Lifetime  40  FPY 

Availability  85% 

Operational Dose to Workers and Public  < 2.5  mrem/h 
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ARIES-ACT-DCLL IB Radial Build 
(Peak IB Γ = 4.4 MW/m2) 

Va
cu

um
 V

es
se

l 

G
ap

 

75 cm 
IB Blanket 33 

B
re

ed
in

g 
Z

on
e 

2

SO
L

 

Pl
as

m
a 

  10  

G
ap

 

 2 

Sk
el

et
on

 R
in

g 

25 

13
 c

m
 B

W
 

3.
8 

cm
 F

W
 

50 

W
in

di
ng

 P
ac

k 

E
le

ct
ri

c 
In

su
la

to
r, 

C
oi

l C
as

e 

C
oi

l C
as

e 
3 4.2 

T
he

rm
al

 S
hi

el
d 

Skeleton Ring: 
20% FS, 20% He, 60% B-FS. 
Permanent component (185 dpa peak). 
Reweldable at back. 
Impact of n streaming through gaps TBD. 

G
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135 cm, w/o gaps 
(Δ = + 24 cm) 

Vacuum Vessel: 
 2 cm thick face sheets. 
 Space in between filled with: 
  15% steel structure, 25% B-steel, 60% water. 
Permanent component (16 dpa peak). 
Reweldable (1 He appm peak).  
Impact of n streaming through gaps TBD. 

Magnet is well protected away  
from assembly gaps 



ARIES-ACT 

20 cm Skeleton Ring 

20 cm thick 
Manifolds for OB blanket, 
upper divertor, and upper 
half of IB blanket 

VV 

 Shield Plug 

SR 
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Two OB Cross Sections 

Cross Section I underneath magnet: 
Shield and VV only. 
No blanket. 
TBD with 3-D analysis. 

 Cross Section II between magnets: 
Blanket, SR, mnflds, and  
Shield Plug. 
These components along with  
port walls protect sides of 
magnets. 
This should be confirmed with  
3-D analysis. 
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ARIES-ACT-DCLL OB Radial Build  
Underneath Magnet (Peak IB Γ = 5.5 MW/m2) 

HT Shield: 
 80% FS, 20% He, 60% B-FS 
Replaceable and permanent components. 
Thicknesses TBD with 3-D analysis to  
account for n streaming through assembly  
gaps. 

???  

Vacuum Vessel: 
2 cm thick face sheets. 
Space in between filled with: 

 15% steel structure, 25% B-steel, 60% water. 
Permanent component? 
Reweldable? 
Impact of n streaming through gaps TBD. 
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Cross Section I 
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ARIES-ACT-DCLL OB Radial Build  
Between Magnets (Peak IB Γ = 5.5 MW/m2) 

Skeleton Ring/Manifolds: 
 SR: 80% FS, 20% He. 
Permanent components (40 dpa peak). 
Reweldable manifolds (0.2 He appm peak). 
Impact of n streaming through gaps TBD. 

165 cm, w/o gaps 
(Δ = + 25 cm) 

Shield Plug: 
2 cm thick face sheets (like VV). 
Space in between filled with: 

 15% steel structure, 25% B-steel, 60% water 
Permanent component (4 dpa peak). 
Reweldable (0.08 He appm peak).  
Impact of n streaming through gaps TBD. 
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Cross Section II  
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ARIES-ACT-DCLL Div Radial Build 
(Peak div Γ = 2.2 MW/m2) 

Vacuum Vessel 

   Gap 

Divertor 

22 

45 Skeleton Ring 

Gap 

7.7 

Replaceable HT Shield 25 

Large Gap + Th. Insulation 

Winding Pack 

Coil Case 

Electric Insulator, Coil Case 4.2 

50 

3 

Thermal Shield 

He/LiPb Manifolds 

Skeleton Ring/Manifolds: 
 SR: 80% FS, 20% He, 60% B-FS. 
Permanent SR (180 dpa peak). 
Reweldable manifolds (1 He appm peak). 
Impact of n streaming through gaps and 
pumping ducts TBD. 

Vacuum Vessel: 
 2 cm thick face sheets. 
 Space in between filled with: 
  15% steel structure, 25% B-steel, 60% water. 
Permanent component (1.6 dpa peak) 
Reweldable (0.34 He appm peak). 
Impact of n streaming through gaps 
and pumping ducts TBD. 

HT Shield: 
 80% FS, 20% He, 60% B-FS 
 Replaceable every 5 FPY. 
 Impact of n streaming on lifetime TBD. 
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IB Blanket Composition 
(75 cm thick) 

  Thickness (cm)  Composition 

   (volume %) 

FW  3.8  8% ODS FS 
   27% MF82H FS, 65% He 

Breeding Zone  58.2  77% LiPb (70% enriched Li) 
    7% MF82H FS, 

         3.7% SiC, 12.3% He/void 
   (LiPb @ 580 oC; 9 g/cm3 density; 
   Li15.7Pb84.3) 

   

Back Wall  13  80% MF82H FS, 20% He 

Alternate FW design with W  3.8  8.2% W, 8.3% ODS-FS,  
   22.4% MF82H FS, 61.1% He 
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OB Blanket Composition 
(1 m thick) 

  Thickness (cm)  Composition 

   (volume %) 
Blanket-I:    

 FW  3.8  8% ODS FS 
   27% MF82H FS, 65% He 

 Breeding Zone-I  33.2  77.2% LiPb (70% enriched Li) 
    7% MF82H FS, 

         4.2% SiC, 11.6% He/void 
   (LiPb @ 580 oC; 9 g/cm3 density; 
   Li15.7Pb84.3) 

    
 Back Wall  3  80% MF82H FS, 20% He 

Alternate FW design with W  3.8  8.2% W, 8.3% ODS-FS,  
   22.4% MF82H FS, 61.1% He 

Blanket-II:   
 Front Wall  3  same as Back Wall 

 Breeding Zone-I  54  78.4% LiPb (70% enriched Li) 
    8.3% MF82H FS, 

         3.9% SiC, 9.4% He/void 
   (LiPb @ 580 oC; 9 g/cm3 density; 
   Li15.7Pb84.3)  

 Back Wall  3  80% MF82H FS, 20% He 
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Magnet Composition 
  Thickness (cm)  Composition 

   (volume %) 

He-cooled Thermal Shield  2  20% steel, 80% He 
   (@ 80-100 k) 
    

Coil Case  3  95% JK2LB steel, 5% LHe 

   

Winding Pack (from C. Kessel)  50  70% JK2LB steel, 13% Cu,  
   2% Nb3Sn, 10% LHe, 
   2.5% GFF Polyimide 

Magnet dimension and composition disagree with ASC ?! 
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VV Radiation Damage @ 40 FPY 
(behind bulk blanket and shield, away from assembly gaps and penetrations) 

@ IB midplane: 
1 He appm 

16 dpa 
(not behind assembly gaps) 

He/dpa = 0.06  

@ OB midplane: 
? He appm @ VV 

? dpa @ VV 

He/dpa =  ? for VV 

@ Top/Bottom: 
0.34 He appm 

1.6 dpa 
(not behind pumping ducts) 

He/dpa =  0.2 

This vertical cross section is misleading! 
Only shield for Xn through VV and magnet. 
NO VV and magnet behind OB blanket.  

@ Shield Plug: 
0.08 He appm  

4 dpa 

He/dpa =  0.02 
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Streaming Concerns 

•  With 3-D analysis, effect of neutron streaming on damage level should be assessed for: 
–  Shield 
–  Skeleton ring 
–  Vacuum vessel 
–  Stabilizing shell. 

•  ARIES-ACT-DCLL has several streaming problems due to: 
–  Assembly gaps: 

•  Horizontal/radial gap at IB midplane 
•  Radial/poloidal assembly gaps between IB modules 
•  Radial/poloidal assembly gaps between OB modules (blue wedged shape shield in ARIES-AT is inefficient and will be 

redesigned) 
•  Radial/poloidal assembly gaps between divertor plates. 

–  Large penetrations: 
•  Plasma control 
•  Fueling 
•  Diagnostics 
•  Divertor pumping ducts. 
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Examples of Neutron Streaming Effect  
2 cm Wide Assembly Gaps increase He by > 1000 and dpa by > 4 
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Ongoing study 
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Final Remarks 

•  3-D shielding/streaming analysis will be performed to: 
–  Develop OB cross-section underneath magnet  

–  Map radiation damage poloidally and toroidally, taking into consideration effect of neutron 
streaming through assembly gaps and large penetrations. 

•  FS-based designs should avoid using materials with relatively high decay heat (such as  

 W and Mn-based steels) in order to control thermal response during transients (such as LOCA). 

•  Designing W-free Shielding Block behind assembly gaps is challenging! 

•  Seeking novel ideas to conduct/radiate decay heat to surroundings particularly for IB 
components. 

•  Q: type of steel for ARIES VV and Thermal Shield? 


