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Purpose of Workshop

The purpose of the workshop was to gather,
present, discuss, and derive a view of the Socio-
Economic aspects of fusion. The outcome of this
workshop will be a consensus opinion for the
workshop participating countries and regions,
principally the EU, Japan, US, and China.

Participating Regions

Attendees

United States

J. Kulcinski, F. Najmabadi, J. Schmidt, L.Waganer

Japan S. Konishi
China J. K. Xie
EU I. Cook, D. Ward, and many other participants (~16)

- Link to Workshop agenda and presentations at www.fusion.org.uk/socioecon
- Summary of Workshop by Ian Cook can be found in June issue of
ANS-FED newsletter, http://aries.ucsd.edu/ANS/newsletters.shtml
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General Topics of Discussion

e Predicted Energy Demand

 World Energy Historical and Predicted Usage

e Natural Resource Limitations (Fossil and Fissile)
e Capabilities of Renewable Energy Sources
 Major Energy Generation Capabilities
 Electrical Energy Storage

 Alternate, Non-Electricity Production

e Internal and External Cost of Electricity
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Predicted Energy Demand

PROJECTED ENERGY DEMAND BY REGION
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Predicted Energy Demand by Source
PROJECTED WORLD ENERGY DEMAND BY SOURCE
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China Energy Consumption Estimate

Energy needs | Electricity | Nuclear
(B.ton Coal (GW) elec.
Equiv.) (GW)
2000 1.5 300 4
2020 3 600 30-40
Ref: J. Xie, “China View of
Fusion Energy”
2050 4 800-1000 80-100

Everybody has a TV and they will feel they are entitled to have the
“good life.”

* Refrigerators * Computers

¢ Air Conditioners eEntertainment Centers
*Cars *Boats

*Bigger Houses *Etc
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Link Between Standard of Living and Energy
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Ref: S. Konishi and Y. Yamamoto,
“Socio-Economic Considerations of
Fusion in Japan’
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Japan’s Energy Forecast

Example of Outlook of Global Energy
Cunsumptlnn by IPCCQZa

.l -«. e .

O Electricity
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1990 2000 . 2020 2040 2060 2080 2100
Year

World energy demand grows especially on electricity and transportation.

Ref: S. Konishi and
Y. Yamamoto,
“Socio-Economic
Considerations of
Fusion in Japan”
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EU Goal is 60% Reduction by 2050

Must Use Carbon Capture and Storage + Nuclear Power

20
CCS adds an
o Extra ~ (.5-
: 2p/kWh
S 10
; (~ 1-4 ¢/KWh)
S
o s
2
i
¢ Ref: J. Gibbons,
“Carbon Capture
and Storage — A
5 Bridge to Fusion?”
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Emiszion trajectories consistent with various atmospheric CO2 concentration ceilings
(J. BEdward. NREL Energy Analysis Forum, Understanding the LS. Strategic Interests in Expanding
Renewable Energy Systems Worldwide, Washington, DC, June 11-12, 2003,
httpiteaww _nrel govianahlysis/forum/docs/jas_edmonds.2 ppt)
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EU Electricity Generation with CCS

Fuel Mix in Electricity Generation for 60% CO; Reduction in 2050
Nuclear 3.0 p/kWh

This model shows use
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Ref: P. Howarth, “Future
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Fission Roadmap s
Fission Energy Technology”

The Evolution of Nuclear Power
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Japanese Electricity Generation Model

Fusion
contributes B Nuclear Fusion
after 2060 UInnovatives
B Photovoltaics
UyWind
B Hydro&Geoth.
®Fle. Storage
Ref: S. Konishi and " B Nuclear Fission
Y. Yamamoto, ®)\ethanol Fired
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Fusion in Japan” 20000 ®IGCC CO2 Rec.
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1““““ N III N I I - H e
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2000 2020 2040 2060 2080 2100

year
A GLOBAL model for minimizing world total energy costs under CO,
constraints shows possibility of fusion.

World energy economy was analyzed for 10 blocks, but all areas except for
oceania and middle-east showed similar results.
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Japanese Energy Generation Model
Business As Usual =—)

OFuture energy market is analyzed to fill the demand with minimal cost.

Ounder a “Business as usual” scenario, few new energy technology will Market Drlven by Resource and
be deployed. Environmental Constraints

actual estimated
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" Fusion hydrogen
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Ref: S. Konishi and I Suspect the

Y. Yamamoto, . Ve
“Socio-Economic ordinate grid is
Considerations of .

Fusion in Japan” incorrect
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CO’ Limits Affect Renewables, Fusion

and Natural Gas
Scenario variants with various CO, limits, MD. 2100
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Baseline Electricity Forecast
Recent long-term scenario results with the TUG-IPP

global single-regional energy model — 1
(Ref Max Plank Institute/Institute of Theoretical and Computational Physics)

Generated electricity by fuel type - baseline
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Boundary conditions for fusion power in
the TUG-IPP model

 Fusion power does not enter the solution, if GEN IV liquid
metal fast breeders are available

 Fusion power is favoured by constrained CO2 emissions

 Fusion power is favoured by lower availability of resources
(coal, gas, oil, uranium)

 Fusion power Is favoured by lower shares of solar power and
wind power, although high shares of renewables are not
excluding fusion power from the system — fusion power and
renewables can coexist

 Limits on the maximum amount of CO? sequestration have no
Impact on the role of fusion power

Ref: C. Eherer, “Recent long-term
scenario results with the TUG-IPP
global single-regional energy model — I”
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Baseline Electricity Forecast

with Constraints on CO?, Renewables, and Resources

Generated electricity - Fusion share 19.4%
(%50 ppm. max. 25% wind & solar, 85% resources)
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Electrical Energy Storage

* These sources are limited to certain geographical regions

* Periodic renewable energy sources, such as Solar, Wind,
and Tidal, are limited to peaking demands, unless they are
supplemented with storage systems.

* Adding storage capability significantly increases their COE,
decreasing competitiveness

 Pumped storage (hydraulic or pneumatic) appeared to be
the best

e Spinning electrical grid capacity and hydrogen storage can
be forms of energy storage
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Attribute Scores for Fusion Products

Hydrogen Production
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Internal and External Cost of
Electricity

“Internal costs” are the contributions to the cost of
electricity from constructing (direct and indirect), fuelling,
scheduled maintenance, operating, and disposing of, power
stations

In addition to the internal costs, there are also
“external costs”, and “shadow costs” associated with
constraints.

e External costs are those associated with environmental damage or
adverse impacts upon public and worker health.

* A methodology for evaluating external costs of electricity
generation was developed for Europe and used to evaluate the
external costs of a variety of electricity sources.

* Has also been used to evaluate the external costs of fusion
electricity in Europe.
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What Capital Cost Elements of COE
Can Be Influenced?

ARIES-AT is a typical example * Indirect costs reflect direct
costs
Distribution of Direct Capital Costs «See next slide for RPE
O 20 Land and Land * Stl‘lfc.tl.lres and Site
Rights Facilities represent 19%

W 21 Structures and Site || and little can be reduced
6% Facilities . .
0O 22 Reactor Plant Equip u.nle.SS lnhere.nt safety is
significantly improved
00 23 Turbine Plant Equip || o TPE, depends on heat
B 24 Electric Plant Equip conversion method
* Special Materials is
dependent on design

B 26 Heat Rejection Sys approach
* Others cannot be changed

14%

See next Slide O 25 Misc Plant Equip

For Breakdown

O 27 Special Matls

51%

Few of these Capital Cost
Ref: L. Waganer, “Cost of Fusion elements can be addressed
Electricity from US Studies”

to reduce the cost
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Can the Reactor Plant Equipment Costs

Be Influenced to Reduce the COE?

ARIES-AT is a typical example

Reactor Plant Equipment

o FWB
| Shield
10% 0O Magnets

9%

O Supp Heating

B Primary Structure

1% 18% @ Vacuumand Cryostat
m Pwr Supplies

O Impurity Control
B ECRH Brkdw n
@ Heat Transport

6%
4%

Ref: L. Waganer, “Cost of Fusion
Electricity from US Studies”
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e Heat Transport is a large
percentage due to high
temperature operation (1)

* Magnets are always costly

* Vacuum system has
expensive cryostat/vacuum
vessel

 Life of plant shielding is
tailored to protect magnets

* FWB is only 9%, but is
periodically replaced

4 The cost of all components\
can be addressed, but
performance improvement
works in opposition to
lower cost goals

N : J
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Compendium of COE Values

from US Tokamak Studies

e There is a downward evolving trend,
except for ARIES-RS

* Progress has been incorporated in
Physics, Materials, and Engineering

* Now we need new experimental
evidence to continue the cost
improvements

e Should work on all cost factors for
further improved economics
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UKAEA Internal Costs Comparison

Note:
1 Euro~$ 1.26
1GBP~$1.84

Ref: D. Ward, ”Internal
Cost of Fusion
Electricity form EU
Studies”
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Even the near term Models are acceptably competitive. But care!
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Includes projected fuel price increases but no carbon tax. Wind is near-term
technology, but no standby or storage costs are included.
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Philosophical Differences on External Costs
and Market Acceptance Criteria

* The US position is that the cost of
fusion generated electricity must
conform to the same rules as other
sources with no external cost factors

* The cost of development of the
first fusion power plants (Demo,
Prototype, and first Commercial
will likely be largely borne by the
Government

*The capital costs for these plants
will likely be borne by independent
power producers

* The technical risk would predicate
that the fusion COE should be 20%

less than competitive electricity
generation

Electricity from US Studies”

Page 25

* The EU position is that the cost of
fusion generated electricity would
use similar groundrules as other
sources, but external costs would be
included on all sources

* The cost of development and
capital of the first fusion power
plants (Demo, Prototype, and first
Commercial will likely be largely
borne by the Government

* The technical risk associated with
fusion would not be a significant
factor in the decision to develop
fusion

* The fusion COE should only be in
the ballpark to proceed with
development and implementation
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