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Presentation Outline

• Describe the details of a MELCOR model under development for 
the ARIES-CS dual coolant blanket concept

• Present MELCOR results for reactor startup
• Present the results of a decay heat removal analysis for a complete 

loss-of-flow-accident (CLOFA) as a benchmarking exercise for our 
MELCOR model

• Discuss possible accident scenarios that must be considered in 
assessing the safety of ARIES-CS

• Present results for two vacuum vessel (VV) pressurization accidents 
with the use of the ARIES-CS MELCOR model 

• Conclude by discussing future modeling requirements and analyses



Modeling Assumptions and Parameters
• Modeled one-half a field period segment (1/6th of three field period reactor)

– First wall surface area 1/6 of plasma surface area ~ 135 m2

– Applied first wall heat flux of 0.5 MW/m2

– Total operating thermal power for model ~ 372 MW
– Decay heat (obtained from “Initial Activation Assessment for ARIES Compact Stellarator 

Power Plant” paper ~ 10 MW at shutdown and 3 MW at 60 s)
– Radial build based on Laila’s Nov. 11th radial compositions and an ARIES-ST unit blanket 

cell

• Helium Loop (~115 m3)
– Pressure 8 MPa and inlet /outlet temperature 300/480 °C
– Mass ratio (external /in-vessel) ~ 7 to maintain He velocities below 40 m/s in piping

• PbLi Loop (~255 m3)
– Pressure 4 MPa and inlet /outlet temperature 460/700 °C
– Mass ratio (external /in-vessel) ~ 4 (assumed from previous studies)

• Loop configurations based on ARIES-AT confinement building



Header

PbLi drain tank

Heat transfer vault

HXs

Pump

Circ.

MELCOR Model Elevations Based on ARIES-AT
(Need similar information for ARIES-CS)



MELCOR ARIES-CS Model Schematic
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Startup Transient Predictions
Fluid temperatures Structure temperatures
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CLOFA Decay Heat Removal
• Shutdown and complete 

loss of active cooling flow 
occurs, with the VV 
cooling system entering a 
natural convection mode

• Latent heat re-distribution 
results in FW temperature 
of ~ 630 °C (lower than 
730°C predicted by Carl, 
perhaps due to flow coast 
down)

• By 3 hours the 
temperatures start to decay

• At ~26 hours the PbLi loop 
natural convection 
increases
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Possible Reference Accidents

• In-vessel helium or water loss-of-coolant accident (LOCA) analysis to 
demonstrate:

– Pressurization does not fail first confinement barrier (i.e., ARIES-CS vacuum vessel)
– Limited chemical reactions and hydrogen formation (exclude water or limit PbLi)

• In-blanket (breeder zone) helium LOCA analysis to assess:
– Blanket and tritium purge gas system pressurization
– Subsequent in-vessel leakage

• Ex-vessel helium and PbLi LOCA analysis to determine:
– Pressurization of reactor or HTS vault is tolerable
– Behavior of FW/blanket without active plasma shutdown

• These accidents are the most likely confinement bypass event initiators 
because of confinement barrier over-pressurization; it must be demonstrated 
that for all three events the dose at the site boundary does not exceed 10 mSv 
for all radioactive sources combined (dust, FW oxidation, Po-210, and tritium)



Pressurization of Module Maintenance  
Vacuum Vessel

• Two pressurization accidents 
were considered

• A single FW channel rupture 
(0.0012 m2)

• Helium inlet header (0.04 m2)

• Design basis events with 
probabilities in the ~ 1x10-3/year 
range

• Free volume within the vacuum 
vessel (VV) was set at plasma 
volume of ~535 m3

• Immediate plasma shutdown 
occurs, but radiant collapse was 
not included 



Pressurization of Module Maintenance  
Vacuum Vessel

• Shutdown and loss-
of-coolant occurs after 
1 hour, and VV 
cooling enters natural 
convection mode

• Pressures reach  > 18 
atmospheres within 
seconds after the large 
break while the small 
break takes ~ 5 
minutes to reach 18 
atmospheres  

• A pressure relief 
system will be
required for this VV 
option  0
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Pressurization of Period Maintenance  
Vacuum Vessel

• Two pressurization 
accidents were considered

• A single FW channel rupture 
(0.0012 m2)

• Helium inlet header (0.04 m2)

• Design basis events with 
probabilities in the 1x10-3/year 
range

• Free volume within the vacuum 
vessel (VV) was set at plasma 
volume of ~7000 m3

• Immediate plasma shutdown 
occurs, but radiant collapse was 
not included 



• Shutdown and loss-of-
coolant occurs after 1 
hour, and VV cooling 
enters natural convection 
mode

• Pressures reach ~ 2.0 
atmospheres within 
seconds for the large 
break while the small 
break takes ~ 10 minutes 
to reach 2.0 atmospheres

• A pressure relief system 
may not be required for 
this VV option

• However, decay heat 
removal may be an issue

Pressurization of Period Maintenance  
Vacuum Vessel
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Results Summary

• A decision must be made on which accidents will be selected as Reference 
Accident Scenarios (pressurization, decay heat removal, and hydrogen 
generation are concerns)

• Models are being developed to analyze releases during adopted Reference 
Accident Scenarios, but more design information and benchmarking is required

• Decay heat removal analysis suggests temperatures somewhat less than Carl’s 
analyses, and this difference must be investigated further

• The VV is the primary confinement barrier and design basis pressurization 
events must not fail this boundary

– The small VV for the module maintenance scheme will not work without an 
expansion volume available (will also be part of primary confinement boundary)

– The large VV for the sector maintenance scheme is very attractive as a primary 
confinement barrier, if the decay heat removal problem can be addressed



Future Analysis Requirements
• MELCOR in-blanket (LOCA) model may have to be developed based on choice of tritium and 

Po-210 (or Bi-208) extraction systems (low or high pressure extraction systems)

• Tritium inventory, permeation, and accident releases
– Annual release limit (0.1 g-T as HTO/a – ITER to 8 g-T as HTO/a – FIRE) translates into an in-

building permeation limit of between ~10 to 800 g-T/a, assuming a 99% efficient tritium cleanup 
system

– To meet this limit the tritium extraction method proposed by Siegfried Malang, which is a vacuum 
permeator (Nb tubes), is proposed for the PbLi to lower the T2 concentration to levels (produce 
pressures above PbLi < 0.2 Pa) where losses to the building are below the annual release limit

– Will need tritium production rates

• A TMAP model should be developed to examine tritium permeation in the blanket and from 
the cooling systems, and to estimate tritium accident mobilization rates

• Need estimates of VV PFC erosion dust and FW activation product inventories

• ARIES-AT PFC dust and Po-210 inventories will be used for accident source terms

• This information will feed into MELCOR LOCA and LOVA predictions for radioactive 
release estimates and site boundary dose predictions


