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Topics of Discussion

 Development of A~2.5, two field-period configurations
— MHH2-1104, physics characteristics and coil design
— MHH2-K14, physics characteristics and coils

 Development of A~4.5, three field-period configurations
— KQ26Q, physics characteristics and coil design

« Summary and Plans
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MHH?2
1104 and K14

Plane and perspective view of the last LCMS geometry and |B| in real space.
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MHH?2-1104 is a two-field period, aspect ratio
2.64 configuration whose ripple characteristic
renders excellent confinement for o particles.

|B| on last LCMS in U-V space
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The magnetic spectrum of MHH2-1104 indicates rather low “noise”
levels, particularly near s=0.5, although there is a large mirror
component at the core. The overall effective ripple is very good,
being 0.35% at the edge. As aresult, the a energy loss is very small
(~2% in our model calculation using ORBIT3D).
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The overall rotational transform at 5%  prescribed in the configuration
optimization is monotonically decreasing from 0.64 to 0.54 (thus avoiding
the lowest order m=3, 4, 5 resonance). The transform due to the plasma
shaping alone is also monotonically decreasing from 0.37 to 0.34
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One consequence of imposing the prescribed rotational transform (at
5% ) is to suppress, almost entirely, the B(2,1) and B(3,2) components
In the magnetic spectrum, making QA much better for s> 0.5. The
enhanced presence of the principal mirror component does not harm
the a confinement, as we’ve seen in numerous occasions.
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Correspondingly, the effective ripple (calculated by the NEO code for
1/v transport) for the finite B is significantly lower in regions of

r/a>0.5.
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Plots of magnetic field strength along several segments of the field
lines also indicate that there are fewer number of secondary ripple
wells, particularly in regions where r/a<0.7.
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Another consequence of the prescribed rotational transform is that
the configuration has high quality flux surfaces, as shown below
from a PIES calculation.
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MHH2-1104 @ 5% B with monotonically Poincaré plots of MHH2-1104 viewed in Cartesian
decreasing iota profile. Poincaré plot coordinates at three different toroidal angles.

viewed in r-0 coordinates at ¢=0.
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The prescribed rotational transform profile requires a nearly flat plasma
current density which means there is a need to deploy externally driven

sources (hybrid approach).
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An initial coil design (as of 12/07/04) for MHH2-1104 with zero
pressure using “NESCOIL” approach gives reasonably smooth
contours of current paotential on the winding surface and a good

winding surface G a LCMS sep )
/
Winding surface
l
Plasma LCMS %%z%
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Contours of current potential for I(pol)=1, I(tor)=0. 12



A proposed design for the modular coils is to have 8 coils per
period with 4 types of coils. These coils have reasonably smooth

winding, but there are sections where coil to coil spacing may be a
little tight.

Perspective view.

Coils of equal current viewed on the
“U-V plane” of the winding surface in
one field period.
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Even with this relatively simple and smooth design the excursion
of the coils makes them cross both the full and half-period toroidal
boundaries.

half period boundary

Three different views of modular coils and the LCMS for the whole torus.
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These coils provide areasonable re-construction of the shape of
the LCMS of the “fixed-boundary” plasma.

LCMS fixed-boundary (--).

! / VMEC re-constructed

boundary with m=7,n=6 (- -).

LPK_022405

0.7

0.6

05

lota

04

03 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Rotational transform versus normalized

toroidal flux.
15



B(m,n;s)/B(0,0;0)

Comparison of the magnetic spectrum with zero pressure shows
that the “free-boundary” plasma is noisier, having increased
magnitudes of the non-axisymmetric components.
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Correspondingly, the effective ripple (without pressure) is more than
doubled in most of the plasma region. Further optimization of the
coils is needed to rege}iog 1the good confinement of the a particles.
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MHH2-K14 is a configuration of the same ultra-low A family but it has
a rising rotational transform profile in configuration optimization
consistent with that expected with the bootstrap current and without

any other driven currents.

LCMS in four toroidal angles over half period.
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MHH2-K14 has reasonably good QA, but it is not as good as 1104. The
B(2,1) and B(3,2) components remain to be significant in the magnetic
spectrum. The loss of a energy is still reasonable, being < 10% (~6% in
one slowing down time in our model calculation).
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Plots of |[B| along field lines show an increased amount of secondary
ripples and the epsilon-effective (calculated by the NEO code) at the

edge is now ~0.8%.
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A vacuum magnetic well, ~4% @ s=1, was imposed as one of the
constraints in the configuration optimization.
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But it is slightly unstable to both low- and high-n internal modes at

B=4%.
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MHH2-K14 may be also unstable to the external modes for >5% according
to the Terpsichore calculation, primarily due to modes of intermediate
toroidal mode numbers 5 and 7.
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While islands of the lowest orders, m=3, 4, 5, do not contribute to
significant flux loss, the proximity of islands of intermediate mode
numbers degrades the quality of the flux surfaces.
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MHH2-K14 @ 5% B with linear,
monotonically increasing iota profile.
Poincaré plot in r-6 coordinates at ¢=0.
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Poincaré plots in Cartesian coordinates at three
different toroidal angles.



Flux loss due to islands of the lowest order may be significant if
shear is weakened for non-monotonic iota profiles as shown
below for the NCSX-like pressure/current profiles.
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MHH2-K14 @ 5% B with non-monotonic
iota profile. Poincaré plot in r-0
coordinates at ¢=0.
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Different coil designs have been tried for MHH2-K14. The following using
“COILOPT" approach shows one design with relatively low normal field errors
on the last LCMS. The design is still inadequate to recover the a loss
characteristic of the fixed boundary plasma. The design provides alarge
plasma-coil spacing (R/Amin =5.0) but the minimum coil-coil spacing may not
be adequate. Additionally, certain “kinkiness” may need smoothing.

B _n Error = 1.1% (average),

3.4% (max)
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Here we summarize the geometric properties of the 8 modular coill

designs, MHH2-1104 and MHH2-K14 V.

MHH2-1104

No. of Coils: 8/period

Different Types of Coils: 4

R/A_. (coil-plasma)=5.60

R/A,;, (coil-coil)=17.9

| IR-B (max)=0.312 MA/m-T

coil lengths/R =5.91, 5.63, 5.35, 5.08

B(max)/B(0) = 3.56 for 0.4 m by 0.4 m
square conductors.

min

MHH2-K14_V

No. of Coils: 8/period

Different Types of Coils: 4

R/A_. (coil-plasma)=5.01

R/A,;, (coil-coil)=17.8

| IR-B (max)=0.314 MA/m-T

coil lengths/R=5.75, 5.29, 5.18, 5.20

B(max)/B(0) = 2.94 for 0.4 m by 0.4 m
square conductors.

min

LPK_022405
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Plane and perspective views of the last LCMS geometry and |B| in real space.
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KQ26Q is a 3 field-period, aspect ratio 4.5 configuration of the SNS/LPS
family in which the iota profile is selected at an operating B such that
the impact of low order resonance is minimized.
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B(m,n;s)/B(0,0:0)

Minimizing non-axisymmetric residues and effective ripples resulted
In good quasi-axisymmetry in KQ26Q. The effective ripple @s=1is
0.7% at 4% B.
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Plots of |[B| along field lines show structures of secondary ripple
wells, mostly on the high field side. The effective ripple for 1/v
transport (calculated by the NEO code) at the edge is ~0.7%.
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The loss of a energy is acceptable, ~7% in one slowing down time in

our model calculation.
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KQ26Q has good equilibrium flux surface quality, but the remnant of
the m=4 islands may be a concern in free boundary plasma
reconstruction and in coil designs.

Equilibrium calculated by

)
PIES @4% b- In Cartesian /

Poincaré plot in r-0 at ¢=0.
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Equilibrium calculated by VMEC



KQ26Q is stable to the m=1, n=0 vertical mode according to the
Terpsichore calculation (no feedback control necessary) and is slightly
unstable to both low and high-n internal modes at f=4%.

Infinite-n ballooning modes

Low-n modes y.R/v,~0.001
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the local and global modes.



KQ26Q may be unstable to free-boundary modes for f>4% according to the
Terpsichore calculation primarily due to current driven forces at the m=3, n=2
resonance, but it could be made stable with more flux surface shaping to
improve the local shear. It may also be made more stable by choosing more
optimized pressure and current profiles.
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Additional shaping of the plasma to improve the stability to the

external kinks also improves the stability to the ballooning modes.
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But effective ripples are increased by nearly a factor of 2 for
r/a>0.6 in KQ26W, resulting in enhanced loss of o particles.
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Loss of ais nearly doubled (from 7% to 12.5%) with the additional
shaping of the plasma to stabilize the “Terpsichore” kink modes.
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The following illustration shows a coil design with coil aspect ratio ~6. The
maximum normal field error is still too high (~8%). Coil winding looks
complex but coil to coil spacing is quite good.

KQ26Q 13 Coil Characteristics:
No. of Coils: 6/period

Different Types of Coils: 3
R/Ai, (coil-plasma)=5.8

R/A.,, (coil-coil)=10.2

| /R-B (max)=0.278 MA/m-T
coil lengths/R=4.87, 4.49, 4.52

B(max)/B(0) = 2.11 for 0.4 m by 0.4 m square
conductors
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The complexity of the coils is similar to that of the NCSX type
configurations with the same coil-plasma spacing. The geometric

KQ26Q-13
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Summary and Plans

 Two additional configurations, one of the 2 field-period MHH2 family
and one of the 3 field-period SNS/LPS family, have been developed
to the extent that they may be included in the systems code
evaluation.

« Coll designs for these configurations have been attempted but they
have not evolved to the degree mature and steady enough for
engineering studies. We will concentrate on improving MHH2 coils
In the next phase.

« Efforts are underway to bring one of the 3 field-period, aspect ratio 6
SNS family configurations to the same level of development as
MHH2 and K26Q for the systems evaluation.
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