
Alpha Particle Loss Assessments
and Status of Coil Optimization

for 2 Field-Period CS

T.K. Mau
UC-San Diego

L.P. Ku (PPPL), X. Wang (UCSD), P. Garabedian (NYU),

ARIES-CS Project Meeting
March 8-9, 2004

UC-San Diego
1



•    The most developed CS configuration is the 3-field-period case (18 coils),
      which is modeled after NCSX and scaled by the systems code to produce
      2 GW of fusion power, consistent with blanket/shield requirements.

•     The 2-field-period candidate is developed with the motivation to allow for
       simple sector maintenance, with a smaller number of modular coils.

       Presently, there are two versions: 16 coils and 12 coils.

       Detailed evaluation is on-going to reach a self-consistent configuration.

•      In this talk, we will focus on the issue of a particle loss for the 2 fp 16-coil
configuration.

2-field period CS can simplify reactor core maintenance

2



Number of field periods 2
Number of coils 16
D c-p (m) 1.38
D c-c (m) 0.56
Coil Cross Section (cm x cm) 40 x40
Coil current (MA) 12.4
<R> (m)  7.5
<a> (m)  2.0
Aspect ratio 3.75
b (%) 4.0
Vp (m3) 595
S (m2) 732
Bo (T) 5.0
Bmax (T) 14.36
<j> (kA/cm2) 7.76

Top View

Parameters for the MHH2 16-coil CS Candidate
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Alpha Particle Confinement in a CS Configuration

•    a particle confinement can be important in several ways:

      -    It affects the plasma power balance and the reactor plasma
operating point.

      -    It can contribute significantly to the divertor heat load, and
dictate how the divertor is designed

#   profile of heat load  (peak-to-average)

#   blistering of divertor coating due to certain lost a
     incident angles and energy spectrum

•     In this work, we will assess the heat flux due to lost a’s at
        the LCMS for the present MHH2 16-coil configuration.  This
        provides a starting point for addressing the divertor issue.
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The ORBIT-3D Particle Trajectory Code
 (R.B. White, PPPL)

    •    This code uses a Hamiltonian guiding center drift orbit formalism to
       calculate particle trajectories in magnetic field configurations of arbitrary
       cross section with arbitrary plasma b.

•     It is coupled to a 3-D equilibrium geometry, generated by VMEC.

•     The straight field line (Boozer) coordinates are used, in which the
       magnetic field is given as a Fourier series:
          

        where the n≠0 coefficients are the non-axisymmetric components.

•     In our calculations, we assume the equilibrium to consist of closed
        nested flux surfaces, i.e., no island.

         

  

† 

B(r r ) = Bmn
m,n
Â (s)cos(mqb - nfb )
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Plasma Equilibrium and Assumed Plasma Parameters

•    A VMEC equilibrium closely approximating
      nominal  MHH2 16-coil case
      is generated (by L.P. Ku), that assumes 

    p (s) ~ ( 1 - s 1.5 ) 1.5

b = 4%
      
       There is no net current in the plasma.

•     It assumes Bo = 5.5 T, R = 7.5 m, and
       ne = ni = 1.3 x 10 14  ( 1 - s2 )  cm-3

       Te = Ti = 11.5  ( 1 - s2 )   keV

       Initial na  ~   ( 1 - s ) 8

•     The sample size used is 4000 particles.  
       Particles are collisionless and slow down on the background plasma.
       Lost particles are not replaced.
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Lost Alpha Footprint on LCMS During the Early Stages

•   Average toroidal transit time is 3.6 ms
•   During the early stage, energetic a’s  (2-3 MeV) dominate the loss.
     The losses are concentrated along a toroidal strip with -0.5 < qb < 0

Note:  q, f in the figures are Boozer coordinates
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More Lower Energy a’s are Lost at Later Stages (t = 0.18 s)

•    Particles are lost uniformly along the toroidal direction, with a weakly
      discernable periodic structure of the footprint.
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A Summary of ORBIT3D Results at 50000 Transits

•    It appears that a large number of a’s are born on 
      “bad” orbits leading to prompt or very early loss from
      the plasma, contributing to a large fraction of energy
      lost.    This can be reduced by improving the QA of the 
      plasma and by other means to prolong the a residence 
      time  (L.P. Ku).
•     The particle loss is localized at OB region below
       the equatorial plane.
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Pitch Distribution of Lost Particles Indicates Trapped Orbits

•    Pitch :  p  = | v|| | / v
Most particles lost have p < 0.5.
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Estimate of Heat Load on LCMS due to Lost Alphas

•    For now, we make the assumption:  qb  ≈  q (configuration)   [ ? ]
•    We divide the plasma surface into rectangular segments, and add up the
      energy collected in each segment.  For Pfus ~ 2000 MW, Pa ~ 400 MW,
      and total power to surface is faL Pa where faL is fraction of a energy lost.  
       Heat load to segment:  Wa = faL Pa ¥ (DE/Etot)/Area
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Heat Load Distribution is Sensitive to Number of Particles
And Number of Surface Segments

•   Peak heat load appears to decrease with increasing number of particles
     and size of segment.
•   Peak heat load  ~  15 MW / m2;   Average heat load  ~ 2.4 MW/m2 

† 

£
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Non-Axisymmetric Magnetic Field Residuals

From GA

•    n≠0  field residuals can cause enhanced a losses.   We re-ran ORBIT3D 
      with the (0, +1) component removed;  Did not observe reduced loss.
      Other components will be tried.
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Status of Coil Optimization for MHH2 CS

• Objective is to perform analysis in the detailed design and optimization of
magnetic coils and plasma-facing components

             Æ    more efficient interaction with UCSD engineering group

• We obtained two coil design codes and are learning to run them :

-   NESCOIL:  An interface was created to provide input to Cad drawing
    of the coil set for the MHH2 configuration

-   COILOPT:  To examine the coil set for MHH2 16-coil case, we need:
(1)  VMEC equilibrium with reasonable bootstrap current profile

- VMEC equilibrium (w/o net current) obtained at PPPL & GA
              (2)  Representation of the filaments (from NESCOIL) in winding law 

       expansion of (u,v) on the winding surface.  This is now on-
going.

• We will consider some capability of running fixed boundary VMEC.
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Summary & Future Work

•    A preliminary assessment of a particle losses has been performed for
      the MHH2 16-coil CS configuration.   The a energy loss fraction is found
      to be 34% with most energy lost just below the OB mid-plane.

•    Under some simplifying assumptions, the peak a  heat load on the LCMS
       is ~ 15 MW/m2  for the R=7.5m and b=4% 16-coil configuration.

•     In the future, we will like to

       -   Obtain VMEC equilibrium with some reasonable BS current profile
            for the 16-coil and 12-coil cases, and re-examine the a loss issue in
            more detail.
            Perform inversion from Boozer to real coordinates in assessing
            heat load distribution.

        -   Continue performing examination of MMH2 16-coil  and 12-coil sets
             using NESCOIL and/or COILOPT.
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