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•Porous Gas Cooled Divertors

•Thin-Liquid-Protected Divertors
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Porous Gas Cooled Divertors
Objective

•Compare predictions of the MERLOT 
code against FLUENT (6.1.22) 
predictions

Assess impact of using the incompressible fluid 

continuity equation on MERLOT’s Predictions
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Porous Gas Cooled Divertors
Test Problem Definition

• FLUENT has been used to solve 
the conservation equations (mass, 
momentum, and energy)

• Assumptions
Laminar flow
Isotropic porosity
Either incompressible or 
compressible flow
Local thermodynamic equilibrium 
between the gas and solid matrix
Two-dimensional (r, θ)

• 60×754 grid for r and θ
directional resolution 

surface heat flux

flow inlet 
to porous channel

flow outlet 
from porous channel

rori θ r

ro=12 mm, ri=9 mm
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Porous Gas Cooled Divertors
Effective Heat Transfer Coeffcient

Tin=823K, Tout=1423K

Heat input : Q″=30 MW/m2, 

Porous medium characteristic 
dimension : dp=0.1 mm, 

Porosity : ε=0.8
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Coolant: Helium at 823K & 4.0 MPa

cpg=5191 J/kg K, kg=0.3 W/m K, 

µg=3.96×10-5 kg/m s,

ρg=2.327 kg/m3 (for incompressible)

Solid Structure :

ks=100W/m K, 

ρs=19300 kg/m3, cps=132 J/kg K



Porous Gas Cooled Divertors
Temperature Distribution
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Porous Gas Cooled Divertors
Pressure Drop
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Tin=823K, Q″=5 MW/m2,  dp=0.1 mm 

Porosity : ε=0.5 Porosity : ε=0.8



Porous Gas-Cooled Divertors
Preliminary Conclusions

• Heat transfer coefficients predicted by MERLOT and 
FLUENT appear to be consistent

• Pressure drop predicted by MERLOT is significantly lower 
than that predicted by FLUENT for either compressible or 
incompressible assumption 

• Acceleration pressure drop due to gas compressibility 
effects can not be ignored
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Thin-Liquid-Protected Divertors
Objective

A maximum allowable surface temperature has 
been established to limit liquid evaporation and 
plasma contamination (~380 oC for Li)

• This work is aimed at establishing limits for the 
maximum allowable temperature gradients (i.e. heat 
flux gradients) to prevent film rupture due to 
thermocapillary effects
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Thin-Liquid-Protected Divertors
Problem Definition
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• Initially, quiescent liquid and gas (u=0, v=0, T=Tm at t=0)



Thin-Liquid-Protected Divertors
Numerical Method

• Evolution of the free surface is 
modeled using the Level Contour 
Reconstruction Method

• Two Grid Structures
Volume - entire computational domain 
(both phases) discretized by a 
standard, uniform, stationary, finite 
difference grid.
Phase Interface - discretized by 
Lagrangian points or elements whose 
motions are explicitly tracked.  

Phase 2

Phase 1

F
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Thin-Liquid-Protected Divertors
Governing Equations

• Conservation of Mass 0=⋅∇ u

• Momentum ∫
Γ
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A single field formulation

Constant but unequal material properties

Surface tension included as local surface delta function sources
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σo=6.62×10-2 N/m 
γo=1.74×10-4 N/moC
Tm=573 K
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Thin-Liquid-Protected Divertors
Variable Surface Tension Source Term

Variable surface tension : 

σBtBσAtA

n

n : unit vector in normal direction

t : unit vecotr in tangential direction

κ : curvature
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Thin-Liquid-Protected Divertors
Material Properties

• Material property field (Liquid=>Lithium, Gas=>Air*)

(ρL=504.8 kg/m3, ρG=1.046 kg/m3)),()(),( tIt GLG xx ρρρρρ −+=≡

(µL=4.51×10-4 kg/ms, µG=2.0×10-5 kg/ms)),()(),( tIt GLG xx µµµµµ −+=≡

(cL=4287 J/kgoC, cG=1008 J/kgoC)),()(),( tIccctcc GLG xx −+=≡

(kL=46.6 W/moC, kG=0.029 W/moC)),()(),( tIkkktkk GLG xx −+=≡

* Effect of Liquid/Gas density ratio becomes insignificant for values ≥ 100
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• Two-dimensional simulation with 0.01[m]×0.001[m] box 
size and 250×50 resolution 

• ho=0.2 mm, ∆Ts=10 K

Thin-Liquid-Protected Divertors
Steady State Results, very thin films 
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Thin-Liquid-Protected Divertors
Steady State Results, very thin films 
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• Two-dimensional simulation 
with 0.01[m]×0.001[m] box 
size and 250×50 resolution 

• ho=0.2 mm, ∆Ts=10 K

velocity vector plot

temperature plot



Thin-Liquid-Protected Divertors
Steady State Results, very thin films 
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black : ∆Ts=10 K 
blue : ∆Ts=20 K
red : ∆Ts=30 K

maximum y location

minimum y location

• Two-dimensional simulation with 0.01[m]×0.001[m] box 
size, 250×50 resolution, and ho=0.2 mm
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Thin-Liquid-Protected Divertors
Steady State Results, moderate film thickness 
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• Two-dimensional simulation with 0.1[m]×0.01[m] box 
size and 250×50 resolution 

• ho=2 mm, ∆Ts=100 K
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• Two-dimensional simulation 
with 0.1[m]×0.01[m] box 
size and 250×50 resolution 

• ho=2 mm, ∆Ts=100 K

Thin-Liquid-Protected Divertors
Steady State Results, moderate film thickness 

velocity vector plot

temperature plot
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• Two-dimensional simulation with 0.1[m]×0.01[m] box 
size, 250×50 resolution, and ho=2 mm

Thin-Liquid-Protected Divertors
Steady State Results, moderate film thickness 
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black : ∆Ts=100 K 
blue : ∆Ts=250 K



Thin Liquid-Protected Divertors
Preliminary Conclusions

• Methodology can be used to determine the Limiting values 
for temperature gradients (i.e. heat flux gradients) 
necessary to prevent film rupture 

• In some cases (very thin films), limits may be more 
restrictive than surface temperature limits

• Path Forward:

Generalized charts will be developed to determine the temperature 

gradient limits for different fluids and film thickness values
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