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RPD-2002 Chamber

• Use cylindrical jets and liquid sheets to 
shield IFE chamber first walls from 
neutrons, X-rays and charged particles

Oscillating slabs

Cylindrical
jets

Beam-tube
vortices

Picture courtesy P.F. Peterson, UCB

Oscillating slabs create protective 
pocket to shield chamber side 
walls
Lattice of stationary jets shield 
front/back walls while allowing 
beam propagation and target 
injection
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RPD-2002 Jet Layout
Jets rotated 90°
at this
plane

21.6°
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Diagram courtesy P.F. Peterson, UCB

• Jet speeds >12 m/s
• 252 jets total
• 12 rows/quad



4

Turbulent Breakup

• Turbulent primary breakup
Formation of droplets along 
free surface:  “hydrodynamic 
source term”
Due to vorticity imparted at 
nozzle exit

• Onset of breakup, xi
Location of first observable 
droplets
xi ↓ as Weber number We ↑

Flow

xi

Nozzle
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RPD-2002 Correlation Results
[Sallam, Dai, & Faeth 2002]

• Total droplet mass ejection rate ≈ 1300 kg/s
Assumes G(x = 1 m) over entire surface
area of each respective jet  (Mean value
of predictions)
~3% of total jet mass flow rate

• Sauter mean dia. ≈ 5.7 mm for all jets at x = 
1 m

SMD at xi ≈ 0.82 – 1.0 mm for d = 4.61 –
15.6 cm, respectively
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Comments
• Evaporation rate due to target energy deposition 

assuming 6 Hz

116 - 160142458HIF - ID
37 - 5145154NRL - DD

Mass rate (kg/s)X-rays and ions (MJ)Total (MJ)

• Hydrodynamic source term ~1300 kg/s !
Must be reduced (flow conditioning, nozzle, BL cutting, 
etc.)

*

* Saturated Flibe: ∆h = hfg = 5.3 MJ/kg
Subcooled Flibe: ∆h = 7.3 MJ/kg
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Implications for Beam 
Propagation

• Droplets enter into 
beam footprint

• Radial standoff, ∆rs
Measured from 
nominal jet surface

• Equivalent number 
density dependent on
x and ∆rs

Ignores jet-jet 
interactions

xi

Beam / jet 
standoff 
distance

Beam 
footprint

x

∆rs
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Implications for Typical
RPD-2002 Jet: d = 4.61 cm (Row 0)
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Implications for Typical
RPD-2002 Jet: d = 15.6 cm (Row 11)
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Beam Propagation Implications

• Model predictions imply protection concept 
is incompatible with beam propagation 
requirements

• However, model is based on :
Fully developed turbulent pipe flow at exit
No flow conditioning, nozzle or BL cutting

• Can nozzles / jets be designed to reduce 
these number densities to a level compatible 
with beam propagation requirements?
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Objectives
• Estimate rate of droplet formation due to 

hydrodynamics (turbulent breakup) for the 
thick liquid protection concept

• Evaluate effectiveness of boundary layer 
cutting

Can the hydrodynamic source term be reduced / 
eliminated?
Can BL cutting be used to reduce the hydrodynamic 
source term?
Can BL cutting be used in lieu of “traditional” flow 
conditioning?
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• Pump-driven 
recirculating flow loop

• Test section height ~ 1 m
• Overall height ~ 5.5 m
A Pump B Bypass line
C Flow meter D Pressure gage
E Flow conditioner
F Nozzle G Oscillator (Not used)
H Sheet I 400 gal tank
J Butterfly valve K 700 gal tank

Flow Loop
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Experimental Parameters
• δ = 1 cm; aspect ratio AR = 10 
• Near-field: x / δ ≤ 25
• Reynolds number Re = 130,000 [Re = Uoδ / ν; Uo

average speed; ν liquid kinematic viscosity]
Re = 138,000 – 467,000 for RPD-2002

• Weber number We = 19,000 [We = ρLUo
2δ /σ; ρL liquid 

density; σ surface tension]
We = 68,000 – 230,000 for RPD-2002

• Froude number Fr = 1,400 [Fr = Uo
2 / (gδ); g gravitational 

acceleration]
• Fluid density ratio ρL /ρG = 850 [ρG gas density]

z
yxδ
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Flow Conditioning
• Round inlet (12.7 cm ID) to 

rectangular cross-section 10 cm ×
3 cm (y × z)

• Perforated plate (PP)
Open area ratio 50% with staggered 4.8 
mm dia. holes

• Honeycomb (HC)
3.2 mm dia. × 25.4 mm staggered 
circular cells

• Fine mesh screen (FS)
Open area ratio 37.1%
0.33 mm dia. wires woven w/ open cell 
width of 0.51 mm (mesh size 30 × 30)

• 5th order contracting nozzle
Contraction ratio = 3

HC

PP

FS

3.8 cm 

3 cm

14.6 cm

x y
z



15

Boundary Layer Cutter

• “Cut” (remove BL 
fluid) on one side of 
liquid sheet

• Independently control:
Cut depth, ∆zcut

Downstream location of 
cut, x

• Removed liquid (~0.18 
kg/s) diverted to side
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Cutter Details
• Aluminum blade inserted 

into flow
Remove high vorticity / low 
momentum fluid near nozzle 
wall
Blade face tilted 0.4° from 
vertical
Blade width (y-extent) 12 cm

• Relatively short 
reattachment length

Nozzle contraction length 63 
mm

Nozzle

Diverted 
(cut) fluid∆zcut

Cutter 
blade

7.
5 

m
m
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Jet Profiles
(x / δ = 15)

• Obtained from average 
of 130 images over 4.3 s

• Standard flow 
conditioning design

• Cut depth, ∆zcut = 0.25 
mm

• Nominal free surface (jet 
nozzle) indicated by 
dashed lines

• BL cutting results in 
“dog-bone” structures 
near edges of jet

No cutting

0.25 mm cutz

yx
Note: Vertical axis at 5× magnification

1 cm
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Jet Profiles
(x / δ = 25)

• Uncut jet inside 
nominal free surface

• “Dog-bone” structures 
more pronounced

Sharp transition to 
edges of jet

• Jet width (y-extent) 
decreases with cutting

0.25 mm cutz

y
x

No cutting

Note: Vertical axis at 5× magnification

1 cm
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Summary:  BL Cutting

• Reduces surface ripple by 17% for ∆zcut = 
0.25 mm and standard flow conditioner

Preliminary data suggest 48% reduction in 
surface ripple for ∆zcut = 0.38 mm (Re = 97,000; 
x / δ = 16)

• Re-emergence of “dog-bone” structures as 
seen at lower Re

• Jet width (y-extent) decreased by ~6 mm at 
x / δ = 25
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Mass Collection Procedure

• Cuvette opening = 1 cm × 1 cm 
w/0.9 mm wall thickness

• Five adjacent cuvettes
Cuvette #3 centered at y = 0

• Located at x, ∆zs away from 
nominal jet position

∆zs ≅ 2.5–15 mm
Experiments repeated to 
determine uncertainty in data

• Mass collected over 0.5–1 hr∆zs

x
6.5°

Cuvettes

y
z

54321
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Droplet Trajectories

• Droplets follow ballistic 
path based on

Absolute streamwise and 
radial velocities

Neglects gravitational and 
aerodynamic effects

• Droplet “halo” forms 
starting at xi

Droplets only inside halo

x

y
z vu ~~  and 

6.5°
Jet

Drops

oo 088.0~,78.0~ UvUu ⋅≤⋅=
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Droplet Visualizations

• Model predicts SMD = 
0.6 – 1.3 mm 

No flow conditioning

• Droplets collected on 
coated microscope slide

Standard flow 
conditioning
Re = 130,000; x / δ = 25
Diameters O(1–100 µm) 

• Initial visualizations for 
no fine mesh suggest 
intermittent ejection of 
large (~1 mm dia.) drops
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Collected Droplets

• Droplets with red
trajectories collected by 
cuvettes

Cuvette shown at x = 25 
cm, ∆zs = 4 mm, θ = 0°

• Note that z = 0 
corresponds to nominal 
free surface of jet

xi
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Summary:  Mass Collection

• Flow straightening and contracting nozzle 
significantly reduce ejected droplet mass (by 
3–5 orders of magnitude) compared w/model

• BL cutting has considerable impact on 
collected droplet mass

• BUT:  proper flow conditioning more 
important

• Flow conditioning and BL cutting reduce 
collected droplet mass by orders of magnitude 
(compared with model predictions)
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Conclusions
• Hydrodynamic source term sensitive to initial 

conditions
• Jet geometry, surface ripple and breakup 

affected by flow conditioning
• Flow conditioning / converging nozzle reduces 

droplet mass flux (and number density) by 3–5 
orders of magnitude over model predictions

• BL cutting appears to eliminate droplet ejection 
for a “well-conditioned” jet

• Preventing blockage of fine mesh screens major 
issue
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Hydrodynamically Shaped Penetration 
With Backwall Modification

• Scaled penetration/backwall geometry shown in APEX 
study to ensure fluid closure downstream of penetration 

Simulations for perfectly wetting fluid (0° contact angle)
Leading edge x = 16.4 cm from nozzle exit

• Downward and upward-facing flat surfaces
No centrifugal acceleration

7.1 cm

3.8
0.84

0.09
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Initial Results

• Water on stainless steel (contact angle ~50°)
• Re = 10,000; We = 1,000  (APEX:  Re = 860,000; We = 

305,000)
• Similar results for horizontal upward-facing surface
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Extra Slides
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