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Beams drift, combine and possibly 
compress in plasma drift region

• 10-80 beams per side 
• Combined beams must focus to a 1-cm spot at the adiabatic discharge channel to 

couple to hybrid target (0.5-cm radiator - D. A. Callahan, M. C. Herrmann, M. 
Tabak, Laser and Particle Beams, 20, 405-410 (2002). )
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Goal is determine transport characteristics and stability regimes 
of compressing/combining  beams in neutralizing plasma 

1013-1015 cm-3



Topics 
• Plasma-neutralized drift transport in a 

solenoidal field for a driver beam
– Search for optimal transport conditions

• Extreme neutralized drift compression 
(NDC) with IBX parameters for HEDP 
applications
– Compress in neutralizing volumetric plasma
– Need to compress ½ J beam to 0.2 ns (to 

avoid target disassembly) and 1 mm radius 
for 1011 J/m3 energy density 



What solendoid/plasma conditions 
yield best beam transport?

• For near term laboratory experiments, residual 
net currents are not a problem – np >> nb is 
sufficient

• For a driver, we need to worry about minimizing 
both electrostatic and magnetic self fields

• Examine problem with simulations of driver 
beam injected into preformed plasma with 
solenoidal field (no compression)



6-7 kA net currents calculated for 
beam without applied Bz

• 150 kA, 200 MeV Ne+ beam, normal injection with 10-cm 
sharp-edged radius, 15-cm tube filled with 1012 cm-3

plasma – finer resolution, more 6x more particles
• 6-kA net current predicted by laminar flow theory 

Beam density at 80 ns Net current with radius 
R at 80 ns



Net currents decrease with increasing 
Bz and skin depth to cyclotron radius*

• 150 kA, 200 MeV Ne+ beam, normal injection with 10-cm 
sharp-edged radius

• Net current is 1.5 kA for 2 kG fields, 0.7 kA for 8 kG
• Here skin depth to cyclotron radius, ωce / βωp = 4.33, 18

Net current with radius 
R at 60 ns for 8 kG Bz

Net current with radius 
R at 60 ns for 2 kG Bz

* Consistent with model of I. Kagonovich, PPPL



Net Current scaling with Bz

• Averaged over 5 cm about z=150 cm at 60 ns
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Matched rotating ion beam case

• 2.7 kA, 200 MeV, 10 cm Ne+ ion beam (cold)
• Ne rotation matched with 5 T solenoidal field
• Transport for 2 meters in 15-cm drift tube with electron 

emission from outer wall
• 2x1010- 2x1013 cm-3 uniform 3-eV plasma density
• LSP explicit simulation – electron cyclotron and plasma 

frequencies resolved
• Beam density nb = 1.3x1010 cm-3

• 4 simulations with ωc = 8.8x1011 s-1

– ωp = 0.01, 0.03, 0.1, 0.3 ωc
– np = 1.5, 15, 150, 1500 nb



Beam transport improves with plasma 
density as long as ωc > βωp

t=40 ns

np = 1.5 nb

np = 1500 nb

np = 150 nb

np = 15 nb



ES potential drops with plasma density

np = 1.5 nb

np = 1500 nb

np = 150 nb

np = 15 nb

Potential drops to noise level for 1500 density ratio

40 ns



Transport is most ballistic with 
large plasma density and applied 

solenoidal field

• np >> nb and ωc > βωp produces 
best transport

• Residual electrostatic potential
small for np >> nb

• Azimuthal self magnetic field small 
for ωc > βωp

*

* Also consistent with model of I. Kagonovich, PPPL



IBX Neutralized Drift Compression
• 6 MeV, 0.35 A K+ beam (.32 J, 10-4

perveance)
• 1 pi-mm-mrad emittance
• Beam profile

– uniform 3-cm outer radius with 50 ns rise 
and fall in density ( 1.4x108 cm-3 density)

• Velocity tilt 0.017-0.019c in 200 ns pulse
– Focus at z = 980 cm

• 10-m drift length, 20-m focal length
• No beam energy error at injection
• Plasma density initialization

– Increasing 109 – 1.75x1010 cm-3

• 2D Lsp simulations
– Electromagnetic, explicit particles
– Outer wall SCL electron emission
– 2.5-mm, < .1 ns resolution
– Double precision

Requires factor of 1000 axial compression

No guide solenoidal magnetic field
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Ballistic beam compresses to 300 
Amps – 1000 compression

• Constant radius beam, 50-ns rise/fall, 980-cm compression length
• Limited by resolution

z=900 cm

z=940 cm

z=100 cm
z=500 cm

z=980 cm

Longitudinal phase space still 
cold just before focus



Full Lsp simulation calculates  
compressed to 200 A

• Including self EM fields, plasma effects

Small numerical energy error 

z=900 cm

z=940 cm

z=100 cm
z=500 cm

z=980 cm

Total energy

Energy error



No significant growth in emittance

z=900 cm

z=940 cm

• Current loss to wall 0.04% 

probes at different axial positions

z=10 cm

z=500 cm

z=980 cm

Therefore, focusing still possible after compression.



Small growth in longitudinal energy spread
• Constant radius profile, increasing plasma density
• Wiggles in energy seen beyond 1800 ns - 2 stream or numerical?



Electron oscillation evident
• Weak 2-stream instability?

– wavelength consistent λ = 2 π β (c ωp)-1/2 ≈ 6 mm
• Does beam compression reduce instability?



Simulations show robust drift 
compression in a neutralizing plasma
• IBX parameters were simulated with a velocity tilt to 

compress to 0 pulse length in 980 cm
• Beam compresses by nearly 600 in full sim
• No calculated transverse emittance growth

– Beam can still be focused radially!
• Weak beam-electron two-stream instability
• Simulations of NDC with NTX parameters are underway

Reasonable beam compression ratios limited 
only by accuracy of velocity tilt!


