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Beams must combine in all HIF 
transport scenarios

• For mainline Neutralized Ballistic Transport 
(NBT),  the beams combine right at the target 
within a  2-3 mm radius

• For Assisted Pinched Transport (APT) and  Self 
Pinched Transport,  the beams combine at the 
Adiabatic Discharge Channel within a 1-cm 
radius

• 10-100’s m neutralized drift compression 
envisioned for modular solenoidal transport



Assisted Pinched Transport can reduce chamber focus 
requirements and reduce driver costs - Back up to NBT
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Beams drift, combine and possibly 
compress in plasma drift region

• 10-80 beams per side 
• Combined beams must focus to a 1-cm spot at the adiabatic discharge channel to 

couple to hybrid target (0.5-cm radiator - D. A. Callahan, M. C. Herrmann, M. 
Tabak, Laser and Particle Beams, 20, 405-410 (2002). )
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Goal is determine transport characteristics and stability regimes 
of compressing/combining  beams in neutralizing plasma 



Final focusing limits beam velocity 
tilt for compression to a few %

• For reasonable length simualtions, we use large 
tilts and shorter drift lengths

• 2D calculations examine the two extremes in 
beam current
– low current and longer drift length (30 m) 
– high-current but shorter drift length (10 m) 

• 3D calculations look at high current beam 
combining

• A beam frame calculations would greatly speed 
these calculations



2D LSP Low-Current Parameters
• Ne+ ions

• 100 ns pulse length at injection 
• 2 kA current, rising to 12 kA after 600 ns transport
• 210 MeV Ne+ 2.5x10-3 perveance
• injected in r=10 cm radius with 4 π-mm-mrad emittance
• v tilt: beta = .125-.145 in 100 ns (20 ns pulse after 600 ns drift)

• Uniform plasma fill of 4x1012 cm-3 density in 
conical drift tube

• LSP* used in direct-implicit mode
– Constraints on simulation timesteps and cell sizes are 

greatly relaxed
– Scattering and stripping is ignored

* T. P. Hughes, S. S. Yu, and R. E. Clark, Phys. Rev. ST-AB 2, 110401 (1999); D. R. Welch, D. V. 
Rose, B. V. Oliver, and R. E. Clark, Nucl. Instrum. Meth. Phys. Res. A 464, 134 (2001). 



Simulation shows good transport
• Resolution becomes coarse for the beam at >600 ns 
• Beam density begins lose sharp edge



Net currents increase with distance

• Simple theory predicts 100 
amp net current for 2 kA 
beam 1% of plasma density

• Beam emittance roughly 
doubles to 8 π-mm-mrad by 
600 ns 

• No surprises



2D LSP High-Current Parameters
• Used several ions Ne+, K+, Xe+, Pb+

• Uniform plasma fill with density roughly that of 
beam peak

• Solenoidal field 0-4 kG (uniform over simulation 
region)

• For Ne+:  
• 100 ns pulse length at injection 
• 150 kA current (combining 10 beams of 15 kA)
• 210 MeV Ne+ 0.1 perveance (3 MJ total energy)
• injected in r=5-10 cm annulus
• v tilt: beta = .125-.165 in 100 ns (8 ns pulse after 14.5 m drift)

• Scaling of heavier mass ion simulation 
• Same velocity, m x more energy, 1/m x less current
• Beam emittance was decreased with mass



10 x 15 kA Ne+ beams without Bz
• Ensemble given a 50-π-mm-mrad emittance (2 cm ballistic spot)
• Uniform 4x1014 cm-3 plasma density
• Charge neutralization is excellent – 99.99% neutralized at 160 ns
• Beam magnetically filaments radially, emittance increases 75-π-mm-mrad 

By 180ns, 
emittance
has grown 
50%



10 x 15 kA Ne+ beams with Bz=1kG
• Filamentation is reduced slightly with applied field
• Beam density from 120-280 ns



Significant net current at beam 
edges produce annulii
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Scales wtih square root of 
current - example for 300 kA

• No applied B field case
• Roughly 10-20 kA net currents (Amps) force concentric beam annulii to form  -

consistent with theory - D. R. Welch. D. V. Rose, B. V. Oliver, T. C. Genoni, R. E. 
Clark, C. L. Olson and S. S. Yu, Phys. Plasmas 9, 2344 (2002). 

Lower perveance beams should be less susceptible



10 x 7.5 kA K+ beams show improved 
transport

• 32-π-mm-mrad beam emittance for a 1.4 cm ballistic spot (K = 0.025)
• 2x1014cm-3 plasma density
• K filametation looks tolerable, emittance grows to 42 π-mm-mrad
• Beam density from 120-280 ns



10 x 2.3 kA Xe+ beams
• Beam emittance 13 π-mm-mrad for a 0.6 cm ballistic spot, grows to 17.5

– K = 2.4x10-3

• 6x1013 cm-3 plasma density
• Coupling to adiabatic discharge channel looks feasible
• Beam density from 120-280 ns



10 x 1.45 kA Pb+ beams
• Beam emittance 9.5 π-mm-mrad for a 0.4-cm ballistic spot, grows to 10.7

– K = 9.2x10-4

• 4x1013 cm-3 plasma density
• Stiffer beam shows little filamentation, excellent spot
• Beam density from 120-280 ns



3D Lsp simulations with ¼ volume

• Direct-Implicit cartesian
electromagnetic simulations 

• Symmetry boundaries at y=0 and x=0
• 2 uniform density ion beams of 3-cm 

radii with edges just touching (slightly 
asymmetric in azimuth) – models 8 
beams in full volume



Combined Ne+ beam filament
• 4x1014 cm-3 plasma density 
• 5 π-mrad-mm emittance
• Combined beam emittance grows to 86 π-mrad-mm
• Filaments wash out near focus (z > 800 cm)

Beam density z=410 cm at 160 ns     z=810 cm at 240 ns         z=915 cm at 320 ns



K+ beams show 2d and 3d filamentation

• 2x1014 cm-3

plasma
• Beamlets have 3 

π-mrad-mm 
emittance

• 4.4 kG self B 
fields by 240 ns

• Combined beam 
emittance grows 
to 15 π-mrad-mm
Beamlets first 
radially filament, 
then the 
combined beams 
show m=8 
azimuthal mode 
structure

B field VectorsBeam Density



Xe beams combine quiescently 
• Symmetry boundaries at y=0 and x=0
• 2 Xe+ beams of 3-cm radii 
• 1.7 π-mrad-mm emittance
• 6x1013 cm-3 plasma density
• Combined beams reach desired 1-cm spot 

at 1000 cm
• Combined emittance grows to 15 π-mrad-

mm



Beam frame option under 
development for LSP should allow 

longer transport simulations
• 1-cm, 10-kA beam in a 4 x1012 cm-3 plasma example 

propagated 32 ns in the beam frame 
Mesh velocity, 0.2 c

Beam density Plasma electron density



Neutralized Drift Compression 
Summary

• Larger mass ions (eg. Xe+,Pb+) exhibit good transport 
– should couple to APT transport channels

• “Low-current” drift compression of Ne+ over 25 meters 
shows good transport with 6x compression

• Filamentation heats high perveance (low mass) ion 
beams to higher beam temperatures and larger spots

• Solenoidal field reduces filamentation – needs further 
study

• First look at neutralized drift compression for modular 
solenoidal transport encouraging
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